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Abstract: Living organisms have been expected to realize an emergent computing. Although a wide variety of biologi-
cal systems has been exploited as computing devices, there have been a few attempts of computing devices employing
animal collective behaviors. The previous studies have implemented collision-based logical gates employing swarms of
soldier crabs, Mictyris guinotae. However, how to control their movements in connected multiple gates has yet to be
proposed. In this study, two kinds of their behaviors, a positive phototaxis and a puddle-crossing, were reproduced in
the mutual anticipation model with an environmental factor. We discuss that utilizing these behaviors has a possibility to
control crabs’ flow in computing path to connect gates while maintaining their autonomy.
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1. INTRODUCTION

Employing biological systems as computing devices
is motivated by expectations for computation with evo-
lutionary, adaptable, and even emergent properties [1].
Conventional computing systems process information in
a certain frame that programmers/users define in isola-
tion from the outside of it. Such systems would not
evolve in and adapt to dynamically variable surround-
ings and never exhibit the emergent property. The no-
tion of emergent property in computation is expressed
as unpredictable global behavior arisen from local non-
linear dynamics [2], which appears when the global
behaviors cannot be reduced into local behaviors.
Therefore, living organisms are suitable for realization
of emergent computing because they can maintain the
unity as a whole while holding the discrepancy between
global and local behaviors.

A wide variety of biological systems has been ex-
ploited as computing devices, e.g., slime mold; plant;
fungi; proteinoid. Especially, the concept of the colli-
sion-based computing has inspired researchers to con-
struct Boolean logic gates with living organisms instead
of physical objects [3]. The original model of colli-
sion-based computer, also known as billiard ball com-
puter [4], is based on collision between moving elastic
balls, where presence or absence of balls at a certain
place represent logical values 1 or 0, respectively.
Likewise, but autonomously, slime mold logical gate
works when two slimes are united or avoid each other
while following the gradient of attractor [5]. Interest-
ingly, although the slime mold gate operates with more
or less 80% success rate, it can properly work even if a
part of the gate is broken. This apparent robustness is
realized by slimes changing their usual behavior. Au-
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thors argued that, because the discrepancy between un-
controllable behavior of slimes (local behavior) and
computation of Boolean algebra (global behavior) is
inherent in the gate, the slime mold gates are a robust
machine in principle and have potential to emergent
computing.

There have been a few attempts of computing devices
employing animal collective behaviors although a lot of
swarm intelligence algorithms have been proposed, e.g.,
ant colony optimization. The collective behavior of
swarm, flock and school is often regarded as a
self-organizing process so that the global pattern can
arise spontaneously from interactions among members,
where inherent noise causing the diversity of individual
behaviors may play an essential role [6]. In this sense,
animal collective behaviors also have the discrepancy
between local and global behaviors and, therefore,
would become a reasonable candidate to perform emer-
gent computing.

The previous studies have implemented colli-
sion-based AND and OR gates employing swarms of
soldier crabs, Mictyris guinotae |7 ,8]. This species is
endemic to Ryukyu Islands, Japan, inhabiting intertidal
or muddy sand substrate of inner bays and estuaries. It
has a sub-spherical body and grows to approximately 15
mm of carapace length in males [9]. The crabs stay be-
low the sand surface during high tides. During daytime
low tides, large crabs appear on the surface, feed in
droves on the waterlogged sand near the shoreline while
walking forwards slowly, and generate swarms with
internal turbulent flows. By contrast, during night-time
low tides, they appear as well but feed individually and
do not make swarms [10]. In the logical gate of soldier
crabs, logical values 1 and 0 are given by a presence and
absence of a swarm of them. The architecture shown in
Fig. la constructs a two-input three-output Boolean
logic gate (x,y) — (Xy,xy,xy) using the mutual an-
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ticipation model described in the next section. If a
swarm put on either input, it goes straight in a corridor.
If swarms put on both inputs, they are united into one at
the junction and it goes to the middle corridor because
matching the moving directions among members. Im-
portantly, a swarm having inherent noise (represented
by P =20 in Fig. 1b, also see in the next section) per-
form robust computing against an external noise. In
general, logical gates are basic components of digital
computer and can be used in combination. Considering
soldier crabs moving in assembled gates just like elec-
trons flowing through a wire in the electric circuits,
finding how to control their movements would be useful
for making a progress.

We focused on two characteristics related to the
emergent behaviors of soldier crabs. One is a positive
phototactic behavior. The real crabs self-organize better
in response to the bright region in a dark environment
[11]. The other is a puddle-crossing behavior. They col-
lectively come into a puddle of water even though they
individually do not enter it [12]. Both behaviors suggest
that crabs’ collective behavior can be tuned via envi-
ronment. Although simulation study might predict as-
sembly of soldier crabs’ logical gates by utilizing the
characteristic behaviors as connecting path, the previous
studies have adopted different models to simulate them.
In this study, we simulate both behaviors using the
modified mutual anticipation model [13] in order to
confirm possibilities of controlling crabs’ movements
with identical parameters.

2. MUTUAL ANTICIPATION MODEL

The mutual anticipation is explained as “reading each
other’s movements” in a nut shell. This capability coop-
erates with inherent noise to cause dynamical collective
behaviors [13]. In a model, individuals have multiple
potential transitions by which they can interact each
other before moving. The mutual anticipation is imple-
mented as the actual transition that is one of potential
transitions selected via the interaction. The number of
potential transitions results in inherent noise. Therefore,
adjusting the impact of the potential transitions, espe-
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Fig. 1 Collision-based logical gate implemented by
the mutual anticipation model [7]. (a) Snapshots of
computing  {x,y) = (Xy,xy,xy) when (x,y)=
(1,1). Time changes from 1 to 4. (b) Computing per-
formance of the gate when P =1 and P = 20.
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cially values related to a popularity introduced below,
would affect the global behaviors.

The model in this study consists of N individuals
moving in a continuous space as opposed to a discrete
space that the original model introduced [12, 13]. The
location of the k-th individual at the #-th step is given by
P(k,t) = (x,y) , where x,yeR , keK=
{1,2,---, N}. Each individual has P number of potential
vectors v(k,t;i), i€l ={01,---,P —1}. When i =
0, the principal vector is expressed by the angle 6,
such that v(k,t;0) = Lcos6y, + Lsin8,,, where L
shows the length of the principal vector. Otherwise, the
potential vector is defined using a random value, 7;,
selected with equal probability from [0.0, 1.0], and a
random value (radian), ¢;, selected with equal probabil-
ity from [—am,arn] , such that w(k,t;i) =
Ln; cos(8y; + &) + Ln; sin(8,, + &) . Therefore, the
principal vector, v(k,t; 0), is a special case where
n; = 1.0 and & = 0.0. For each v(k,t; i), the target
of the vector is represented by t(k,t;i) = P(k,t) +
v(k,t;i). To implement the mutual anticipation, the
popularity of each target is calculated as the number of
nearby targets within a radius R,, as following:

S i) = 1+ [feCk', 6 DIk, 60 — 2k, 6D

<R, k' € K\ {k}}]
The symbol |S| represents the number of elements of a
set S,and |[x|| represents a length of a vector x.

The location of individuals is asynchronously updated
between time steps t and ¢ + 1. At the beginning of
the asynchronous update at t, a set U for recording the
location of updated individuals is initialized as an empty
set, ¢, and the order of updating individuals is ran-
domly determined by shuffling the sequence (1,2, -+, N).
The updating process of each individual begins with
checking if there is an enough space around their targets
because they cannot secure a spot with a radius R,
where somebody else occupies. This is represented by
the popularity of zero, {(k,t;i) =0, when (k' € K\
{EDlz(k, t;i) — P(K',t)|| < R,. If there exists an iel
such that {(k,t;i) = c (c € N,c = 2), the present lo-
cation for the k-th individual is recorded in the set U,
such that U = U U P(k, t), and then the next location is
defined by

P(k,t) = t(k,t;s),

where s satisfies {(k,t;s) > ~(ie){(k, t; i). The s-th
target can reach the most popular place for the updating
agent. If there are several most popular places, one of
them is randomly chosen. This transition is the “mutual
anticipation”, which the individual moves to the target
of its own potential vector that has the maximal popu-
larity beyond the threshold value, c. The threshold val-
ue decides a difficulty to cause mutual anticipation,
which is usually set to ¢ = 2 for simulation of soldier
crabs on a plane surface. Note that the next location is
still expressed by P(k,t) instead of P(k,t+ 1) so
that individuals yet to move can avoid places occupied
by predecessors (see the above equation to check R,).

If there is no iel such that {(k,t;i) = c, the next
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location for the i-th individual is randomly chosen from
places within the follower neighborhood, Ry, where
updated individuals have gone. This transition is called
“following”, defined by

where Rd{—} is an operation to randomly choose an
clement from a set {—}. Note that a set U contains
coordinates representing the place where updated indi-
viduals have previously occupied.

If the individual could perform neither the mutual an-
ticipation nor following, it moves by

P(k,t) = Rd{t(k,t; )]0 < t(k, t;i) < c}.
This transition is called “free movement”.

After all individuals have been updated, time step is
finally updated as (vk EK )P(k, t+1) =Pk,t) It
implies that ¢ does not show a moment but a period of
time in which all individuals are updated asynchronous-
ly. Moreover, the orientation of principal vectors is up-
dated to be used at the next time step t + 1. We imple-
mented two separate ways to adjust the angle &, .. Ve-
locity matching method adopts average direction of
v(k, t; 0) within the neighborhood radius, M, around
P(k,t +1) as following: 64y = (Oy ) . Instead,
movement history method is based on its own transition
from t to t+1: V(k,t) =P(k,t +1) — P(k,t). The
angle 0, .., is obtained as the angle of vector q(k,t)
defined by q(k,t) =V, (k,t) +w-v,(k,t;0), where
X, Tepresents a unit vector of a vector x, and w is the
weight of the previous principal vector.

3. SIMULATE CHARACTERISTIC BE-
HAVIOURS OF SOLDIER CRABS

3.1 Moving toward a stimulus of light

To simulate positive phototaxis of soldier crabs, we
increased the value of popularity when the targets of the
potential vectors reach to an affected area of light:
{(k,t;)) =0k, t;)) +1(leN). We predicted that
individuals would better stay at the affected area.

We carried out the simulation in a 500 X 500 space
with a boundary condition given in a wrapped fashion,
where parameters are N =20,P = 20,L =30,a =
0.8,R, =15, R, = 7.5, Ry = 30. The light-affected area
was set up in the middle of the space as a circle with a
radius R; = 30. To compare effects of the additive val-
ue, [, we introduced five conditions: No-light, Uni-
form-low, Uniform-high, Gradient-low, Gradient-high
(Fig. 2a). We let | = 0 in No-light condition, ! =1 in
Uniform-low condition, and [ =3 in Uniform-high
condition. In Gradient-low condition, the affected area
had three zones with different values: [ =3 in 0 <
R <10,1=21in 10<R; <20, and I =1 in 20<
R, < 30. Likewise, Gradient-high condition gives | =
5,4,3 for each zone. In addition, we compared effects of
two methods to adjust the principal vector: the velocity
matching with M = 30 and the movement history with
w =1, as mentioned at the end of model section. We
conducted 10 trials for each condition. A trial started
with individuals randomly allocated in the space and
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lasted for 500 time-steps. We measured averaged popu-
lation within the affected area.

Comparing between two methods to adjust the prin-
cipal vector, we found that the movement history meth-
od kept more individuals in the affected area than the
velocity matching method in all conditions except
No-light condition (Fig. 2b). However, differences
among conditions indicated a similar tendency in both
methods: Gradient-high > Uniform-high > Gradient-low
> Uniform-low > No-light.

3.2 Collectively crossing a puddle of water

The previous studies have demonstrated that pud-
dle-crossing behavior is simulated by increasing the
threshold value of popularity when the targets of poten-
tial vectors are in the puddle region [12]. We reproduce
it by using the movement history method instead of the
velocity matching that the previous studies used.

We carried out the simulation ina 300 X 900 closed
space where a puddle area with ¢ = 3, at the dimension
of 300 x 300, was set up in the middle of the space
and the other parts were land areas with ¢ = 2 (Fig.
3a). We implemented individual’s tendency to move
along the boundary following the previous studies. All
parameters except the number of individuals, N, were
same as above-mentioned phototaxis simulation. We
conducted 30 trials for each N. A trial started with N
individuals randomly allocated in one of land areas and
lasted for 200 time-steps. We obtained a proportion of
individuals being in the other land area at the end of
each trial. As a result, we found that the proportion in-
creased with the number of individuals (Fig. 3b).

(b)

Velocity matching

The number of individuals
The number of individuals

B

BNo-ight Ellunitorm-tow Eluniform-high [Grad

jow IlGradient-high
Fig. 2 Simulation of positive phototaxis. (a) Bright
region expressed by an additive value, [, in uniform
manner, left, and gradient manner, right. (b) The
averaged number of individuals inside the bright
region with velocity matching method, left, and
movement history method, right.

4. DISCUSSION

This study investigated whether the mutual anticipa-
tion model simulate the phototactic behavior and the
puddle-crossing behavior of soldier crabs using same
parameters. We employed the model with a continuous
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Fig. 3 Simulation of puddle-crossing. (a) Configura-
tion of land areas and puddle area. (b) Proportion of
individuals crossing the puddle.

space and adjusted values related to the popularity for
introduction of external stimuli of light and water. Large
value of popularity itself in a bright area made more
individuals stay there although the configuration in the
bright area did not have obvious influence. An increase
of popularity threshold in a puddle area made proportion
of individuals who crossed the area increase in a large
size of group consistent with the previous study [12].
We focused on the popularity and its threshold to re-
produce the characteristic behaviors. The popularity of
the targets of potential vectors quantifies a likelihood

that one is heading to the place where others are heading.

Its size is determined by counting the number of others’
targets near one’s target. High popularity causes poten-
tial resonance among close individuals and leads them
to a coherent and cohesive swarm. This inter-individual
interaction was combined with an environmental factor
of a light expressed by the additional value to the popu-
larity in the bright area. In other words, the region of
interaction was locally extended via an environment.
Putting a spotlight on a specific region would allow us
to control individuals to accumulate a swarm. In addi-
tion, similar parameter also reproduced the pud-
dle-crossing behavior. This behavior occurs when
enough individuals successfully accumulate near the
edge of the puddle more than high popularity threshold
[12]. Conversely, it is hard for a small number of indi-
viduals to cross the puddle until other individuals come
to their neighborhood. This implies a maneuver to make
them stuck before the puddle.

A provisional deadlock made of a puddle might be
useful for adjusting the flow of crabs autonomously
passing on a corridor between gates. Collision-based
computing essentially requires well-defined positions
and timing to observe interacting information carriers.
However, we also should leave autonomous behaviors
for crabs as long as expecting emergent properties that
the they have. Use of a light and a puddle in combina-
tion might take advantage of both controllability and
autonomy. For example, a dark region before a puddle
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would make crabs stuck and then spotlighting the edge
of the puddle allows them to cross to the other side.
Moreover, crossed individuals would be inhibited from
returning to the original side unless they accumulate
enough again, reminding us of a diode that transmits
signals in one direction only. These suggest a possibility
that we would be able to control their flow to some ex-
tent while maintaining their autonomy.

In this study, the mutual anticipation model repro-
duced the phototactic behavior and the puddle-crossing
behavior of soldier crabs by adjusting effects of popu-
larity as an environmental factor, suggesting use for
balancing a control and an autonomy of their move-
ments in paths to assemble the gates. Future works will
investigate a global behavior when those emergent be-
haviors are implemented at the same time, where the
contrast between a bright region and a dark region may
be examined to effectively accumulate crabs at the edge
of the puddle region. Moreover, assembling gates by
utilizing those behaviors should be attempted practically
to obtain more robust evidence. Then, group size would
influence a definition of input/output and a success rate.
In addition, other characteristic behaviors, e.g., digging
to escape from threats, should be taken into considera-
tion for comprehensive understanding of emergent
computing potential.
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