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Abstract

In this work, we investigate properties of bidirectional pedestrian streams by studying
different experimental datasets from multiple authors. Through the comparison of a
scenario where lanes naturally form with two others where lane formation is either
obstructed or facilitated, we show the relationship of different pedestrian quantities in
regard to the flow ratio (or directional split). On this scope, two measures to account
for the degree of congestion and self-organization are introduced. The analysis of the
results reveals that the balanced case (where flow is almost equal in both directions) has
very peculiar properties which depends on the existence or not of organized lanes and
their stability. While the balanced case generally shows the highest level of congestion,
this property can quickly change after lanes are formed and when they remain stable.
An in-depth investigation revealed that capacity in bidirectional streams is
characterized by a dual nature: conflicts with the counter flow and self-organization in
lanes. Both aspects have been described using a mathematical model which allowed to
define a function for capacity in relation with flow ratio and environmental/cognitive
aspects. The expression for capacity proposed in our work agrees with several studies
from the literature, eventually allowing to understand the differences among them. We
believe our function for capacity enables a more universal treatment of bidirectional
streams compared to previous definitions, since it allows to account for steady and
non-steady state conditions which represent important mechanisms in their dynamics.
The framework introduced here may also help measuring the influence of
environmental/cognitive changes in relation with the capacity of bidirectional
pedestrian streams.

Introduction 1

During the last few decades a growing interest has been shown on topics related with 2

people’s collective motion and pedestrian dynamics was born to describe and predict 3

pedestrian traffic in public facilities. Although research on crowd behavior mostly 4

started as a sociological/anthropological subject [1], in the course of the years a growing 5

interest has been put on quantitative aspects, in particular concerning the assessment of 6

pedestrian traffic capacity. In this regard, the work by Fruin [2] can be considered as a 7
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first attempt to provide norms to be used in the design of pedestrian structures. In his 8

work, Fruin introduces the so-called Level of Service (LOS) which is used to grade the 9

comfort of urban facilities from the perspective of pedestrian users. 10

With the technological improvements of the last decades specifications for pedestrian 11

facilities have drastically improved both in terms of accuracy and range of application. 12

The LOS is continuously updated and additional definitions are provided for new 13

facilities. An increasingly larger part of the The High Capacity Manual [3] is dedicated 14

to pedestrian traffic and its interaction with vehicles in infrastructures such as 15

crosswalks [4, 5]. At the same time, technological improvements that allowed to gather 16

an increasingly larger amount of information on pedestrian motion are making the 17

necessity of tabulated specifications less urgent. 18

In fact, computer simulation is increasingly used in the design of pedestrian facilities. 19

The most evident advantage of numerical simulation against classical definitions based 20

on specific norms and conventions is the possibility to take into account complex 21

geometries and heterogeneous crowd composition. Although accuracy and reliability of 22

simulations for large scenarios have been debated, computer simulation is surely an 23

efficient tool helping designers to identify dangerous locations and design flaws at the 24

early stages during the development of new facilities [6, 7]. 25

With this said, understanding and defining limits for pedestrian flows still remains 26

an important aspect for the development of safe and comfortable facilities. Accurate 27

simulation models can only be developed if motion of crowds is sufficiently understood 28

and experimental data are fundamental for the validation of those models [8, 9]. In this 29

regard, the progresses in computer simulation have partially downplayed the importance 30

of experimental studies and data-driven approaches are making the need for physical 31

model less stringent. A consequence of this is that the LOS still represents the best 32

approach for grading and categorizing pedestrian spaces. While simple and universal, 33

the LOS has also some limitations, namely the fact that is based on qualitative remarks 34

and the relative small number of infrastructures which are considered in it. For the 35

specific case of the bidirectional flow considered here, only simple and general values are 36

provided for its capacity, although the literature shows that this is a much more 37

complex mechanism. 38

In addition, since the introduction of the LOS, detection of pedestrian motion has 39

also seen a fast evolution. Nowadays, technologies such as computer vision [10] and 40

distance sensors [11,12] are commonly used in real situations. Although some 41

studies [13,14] suggest that such technologies have not reached maturity yet and 42

detection efficiency still depends on crowd density and exposure conditions, there are 43

reasons to believe that in the future more efficient algorithms may contribute in 44

improving their accuracy (in particular regarding tracking capabilities). Also, there are 45

alternatives (e.g. the optical flow) which allow to obtain quantities such as the overall 46

crowd velocities with sufficient accuracy [15]. 47

In this study, we will focus on the bidirectional flow and show that it is possible to 48

study and classify pedestrian motion using criteria related to congestion and 49

self-organization. After studying in detail aspects related with lane formation, we will 50

define a function for capacity using a simple model. The choice of the bidirectional case 51

is related to multiple reasons: it is a very common scenario (corridors, crosswalks, 52

sidewalks or walkways are some examples), it is simple but yet shows emergent 53

phenomena in the creation of organized lanes, it has been extensively studied in the 54

past and it represents the simplest case of bidimensional motion. In this sense, the 55

particular case of the bidirectional flow lies between the widely studied unidirectional 56

motion (e.g. people walking in a circle) and the still “mysterious” motion of crowds in 57

multiple directions (intersections, platform connections, plazas...). To verify the 58

hypothesis introduced in this work and fit the mathematical functions proposed, a large 59
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database consisting of pedestrian trajectories from different authors will be used. 60

This paper is organized as follows: at first, we provide the definitions which will be 61

used in the manuscript; following an overview on previous research on bidirectional flow 62

is given. Later, we will introduce the experimental database and continue by analyzing 63

it using methods presented in the results’ section. Final remarks and considerations for 64

future studies are given in the conclusions. 65

Definitions and nomenclature 66

Bidirectional flow 67

Literature is not univocal on the terms used for the bidirectional flow and it is therefore 68

convenient to introduce at first the concepts that will be discussed in this manuscript. 69

We tried to stick to terms generally used in the literature, but in some cases we had to 70

choose between different usages. 71

To start with, the concept of flow needs to be defined. Taking a corridor as the 72

simplest example, total pedestrian flow is defined as the number of people passing 73

through a given section in a given time. Usually it is measured in (pedestrians) (m·s)−1
74

(some old definitions prefer minutes). For more complex geometries (where it is difficult 75

to define a “cross-section”), flow is typically obtained by multiplying density and 76

velocity (usually the absolute value). 77

The bidirectional flow is characterized by two (monodirectional) streams moving in 78

opposite directions. In case the flow in one direction is bigger than the one in the 79

opposite direction we will refer to the first one as the major flow. The smallest flow in 80

both directions will be defined as the minor flow. When major and minor flows are 81

equal or of similar magnitude we speak of balanced flow 1. In the extreme case of a 82

non-existent minor flow, we will have a unidirectional flow (all pedestrians moving in 83

the same direction). More in general, the asymmetry of bidirectional flows can be 84

measured using the flow ratio (sometimes called directional split) defined as: 85

r =
considered monodirectional flow

minor flow + major flow
=

considered monodirectional flow

total flow
(1)

Note that under the given definition the flow ratio r is defined in the interval [0, 1]. 86

In the case of a balanced bidirectional flow it will be equal (or close in practical terms) 87

to 1
2 = 0.5. When the minor flow is considered (excluding the unidirectional case) flow 88

ratio will take values in ]0, 0.5[ and in the case of the major flow it will result in values 89

included in ]0.5, 1[. We will refer to the counter flow as the flow in the opposite 90

direction to the one being considered (usually we speak of counter flow referring to the 91

the minor flow). 92

Flow regime, phase transition and capacity 93

To complete the discussion on the fundamental principles of pedestrian dynamics a short 94

remark has to be made on the concepts of flow regime 2, phase transition and capacity. 95

1The concept of balanced flow is mostly phenomenological and there is no definition on how similar
the streams in both directions need to be in order to call it “balanced”. From a theoretical point of view
both flows must be equal to call that configuration “balanced”, but in practical terms any configuration
which has fairly similar levels of flow in both directions may be labeled as balanced.

2In vehicular traffic and physics the notion of “state” or “phase” is typically used to describe forms
of motion or aggregation. In this work, we preferred to use the concept of “flow regime” given the
similarities between fluids and pedestrians’ motion. Although pedestrians represent a particular case
and physiological and cognitive characteristics make them different from fluids and cars, we believe that
“flow regime” best suits to describe their motion.
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In introducing the different concepts, we will base the discussion on the previous 96

literature, which mostly dealt with unidirectional (in many cases strictly unidimensional) 97

motion and used the fundamental diagram (FD) as the main analytical tool. The 98

reasons for using the FD in this introduction are that it is a well-known method in 99

transportation theory and it allows to conceptually define several flow properties with a 100

common framework shared with other disciplines (such as vehicular traffic). 101

From the FD (as the one shown in Fig 1) it is possible to define two flow regimes: 102

free flow and congestion. 103
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Fig 1. Fundamental diagram. Flow–density representation of the fundamental
diagram for pedestrian motion [16]. Numerical values refer to the meta-study by
Weidmann [17] and the function proposed by the same author.

Phase transition from free flow to congestion occurs at the critical density, where 104

maximum flow is observed. This particular amount of flow is also defined as capacity 105

and has been the subject of several studies as we will see later. The slope of a line 106

connecting the origin to any single point in the FD provides the velocity at the given 107

flow (or traffic conditions). It is therefore possible to define the speed at capacity, but 108

this value may not be practical in identifying changes in flow regimes since a transition 109

is not seen qualitatively. 110

In addition, a jam density can be also defined to identify the density where the flow 111

drops to zero and pedestrians are at still (although the validity of this definition is still 112

debated [18] and typically holds true only for theoretical treatments). Jam density can 113

be seen as a limit of pedestrian crowds and therefore we can refer to phase transition 114

only in relation to the passage from free flow to congestion. 115

It should be remarked that in the case of bidirectional streams there is an additional 116

flow regime which has been often studied in the literature but cannot be recognized in 117

the FD and refers to the organized motion. It is in fact known that under given 118

conditions pedestrians moving in the same direction get organized in groups to reduce 119

the collisions with the counter flow. 120

The FD has been used in this introduction because it is a well-known concept in 121

transportation and traffic engineering. However, it is important to remark that real 122

measurements of pedestrian properties result in a number of dots dispersed over a large 123

surface roughly defining the behavior indicated as a line in Fig 1. Therefore, clearly 124

determining if a given flow configuration has to be considered congested may become 125
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difficult by using the FD alone. For example, Zhang et al. [19] found that fundamental 126

diagrams for unidirectional and bidirectional flow are different. In addition, while the 127

definition of capacity and critical density appears as a single and unique point in the 128

representation of Fig 1, in reality, transition to congestion occurs at a range of densities. 129

In brief, capacity is a rather simple definition from a theoretical perspective, but 130

defining it in practical terms becomes much more difficult. As we will see in the next 131

section, for the bidirectional case considered here the flow ratio plays a central role 132

when investigating the transition to congestion. 133

Finally, it should be also noted that, in the case of simulation, the deadlock concept 134

is very often used. Some authors used simulations to study the density at which the 135

“jamming transition” occurs, i.e. the density at which deadlocks occur and pedestrians 136

cannot cross the corridor at all. Although this type of studies are important to develop 137

better simulation models, the relation with reality is uncertain since deadlocks almost 138

never occur in real situations and a minimal flow was reported also under very extreme 139

conditions [18,20,21] (the origin and nature of this minimum flow is not clear). 140

Therefore, although we will often refer to deadlock occurrence as a phase transition 141

while reviewing simulation models, it is important to remind that this concept do not 142

necessarily applies to real situations 3. 143

Literature survey 144

In this section, we will focus on the principal topics of this paper (more specifically 145

bidirectional flow capacity and transition to congestion) and see how past studies have 146

investigated the phenomena. Most of the review will focus on experimental studies, but 147

simulation models have been also used to understand particular mechanisms occurring 148

in bidirectional streams and therefore we will consider them to make the discussion 149

more complete. 150

Bidirectional flow capacity 151

Different researchers already tried to estimate the effect that the counter flow has on 152

the overall capacity of bidirectional flows. Readers interested in a detailed discussion 153

are referred to Appendix 1 which contains an exhaustive review of all works treated 154

here. In this section we will compare only relevant aspects of each study. 155

One of the main topic of discussion in the past literature regards the relationship 156

between bidirectional flow capacity and flow ratio. Some authors [22–24] claimed that a 157

“W”-shape (like the one schematically represented in Fig 2(a)) describes this relationship, 158

while others [25–29] obtained a “U”-shape (see Fig 2(b) for a schematic example) in 159

their experiments/observations. Some different shapes have been also reported, like the 160

“M”-shaped capacity obtained by Kretz et al. [30]. 161

Table 1 provides a summary of the studies reviewed with their different conclusions 162

on the shape of the capacity–flow ratio relationship. As it can be seen, the considered 163

studies also differ in the numerical values, with some reporting maximum capacities of 164

over 3 (m·s)−1 and others as small as 1.23 (m·s)−1. More agreement is found on the 165

minimum value, with most studies reporting values roughly around 1.5 (m·s)−1, but 166

disagreement is found again on whether the minimum is expected on balanced or 167

unbalanced/unidirectional configurations. 168

All authors provided phenomenological descriptions to explain why the given shapes 169

were obtained in their studies. Studies presenting a W-shaped capacity function 170

concluded that the high capacity obtained in balanced flows is given by the fact that a 171

3We also noticed that a partially different notation is used for simulation and experimental studies.
As a consequence, unifying both terms was not always possible.
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Fig 2. Typical shapes of the bidirectional capacity function. Curves presented
here are only intended to support the qualitative discussion of this section, quantitative
examples are provided in Appendix 1. Typical W-shaped capacity functions are given in
(a) and U-shaped curves are represented in (b).

Table 1. Capacity–flow ratio relationship: its shape and minimum/maximum capacity for different studies.
Values given in bracket for capacity is the flow ratio at which minimum/maximum is observed; since the
relation is symmetric two extrema are always found but only one is reported for convenience.

Capacity [(m·s)−1]
Author(s) Capacity–flow ratio function Maximum Minimum

Navin and Wheeler W-shaped 1.23 (0.00) 1.05 (0.10)
Cheung W-shaped 1.53 (0.00) 1.12 (0.01)
Lam et al. Slightly W-shaped 1.25 (0.00) 1.11 (0.22)
Kretz et al. M-shaped / Center U-shaped 3.07 (0.10) 1.28 (0.00)
Feliciani and Nishinari U-shaped 2.20 (0.00) 1.50 (0.50)
Wong et al. U-shaped 1.62 (0.00) 1.52 (0.50)
Alhajyaseen et al. U-shaped 2.13 (0.05) 1.34 (0.50)
Zhang et al. U-shaped 2.20 (0.00) 1.88 (0.50)

In Kretz et al., if bidirectional flow only is considered then minimum is found at the balanced case around 0.5. In Alhajyaseen
et al., function tends to infinity for unidirectional flow and it has been therefore computed at a flow ratio of 0.05.

clear division is seen among lanes moving in opposite directions and many argued that, 172

under these conditions, the balanced flow could be regarded as two separate 173

unidirectional streams (like if a wall was set among groups of people moving in opposite 174

directions). Many studies in this category concluded that under unbalanced 175

configurations the creation of lanes is more difficult and therefore a small capacity is 176

obtained. 177

Studies where a U-shaped capacity function was obtained concluded that in the 178

balanced configuration there is a large number of interactions as neither group is 179

dominant on the opposite direction. This results in many people having to adjust their 180

walking direction and it will therefore rapidly lead to a congested motion which reduces 181

speed and finally results in the smaller capacity. The same researchers noted that under 182

unbalanced configurations one direction always dominates the other and therefore 183

interactions are reduced and capacity is higher compared to the balanced case. 184

To get further clues on why apparently similar studies (all are about bidirectional 185

streams) arrived to different conclusions it is important to compare the context under 186

which observations/experiments were performed. Table 2 contains a more qualitative 187

comparison of the different works by considering the type of study (supervised 188

May 7, 2019 6/38



experiment or on-field observation), the facility studied, its width and whether the flow 189

from both directions was continuous or intermittent (i.e. small groups of people entered 190

an empty corridor and left it empty after their passage, like in the case of a crosswalk 191

with a traffic light). 192

Table 2. Comparison between the different studies. Continuous pedestrian stream indicates a situation in
which people continuously flow through the facility, while small group interaction is the case in which two
groups limited in size pass each other’s (as in the case of signalized crosswalks).

Author(s) Type of study Facility Width Pedestrian stream

Navin and Wheeler Observation Sidewalk N/A Continuous
Cheung Observation Walkway 2.5–3.3 m Continuous
Lam et al. Observation Crosswalk 7.2 m / 9.0 m Continuous?
Kretz et al. Experiment Corridor 1.98 m Small group interaction
Feliciani and Nishinari Observation Corridor 6.0–7.4 m Large group interaction?
Wong et a Experiment Corridor 3.0 m Small group interaction
Alhajyaseen et al. Observation Crosswalk 4.0–10.0 m Small group interaction
Zhang et al. Experiment Crosswalk 4.0 m Small group interaction

In Lam et al. the term “crosswalk” suggests an interaction between small groups, but the images provided by Lam et al. [24]
implies that possibly the flow was rather continuous. In Feliciani and Nishinari pedestrian stream was mostly intermittent but
interacting groups of pedestrians were rather large thus making the flow continuous at certain times.

By comparing Table 1 and Table 2 it is interesting to see that there seems to be a 193

correlation between the type of pedestrian stream and the shape obtained for capacity. 194

In the case of continuous streams a W-shape was typically obtained, for small group 195

interactions a U-shape seemed more common (with the partial exception of Kretz et al. 196

who concluded that unidirectional flow is always less efficient). Facility’s width 197

apparently has little or no relation with the shape of the capacity function as well with 198

the reported maximum and minimum values. We could argue that facilities having a 199

width in excess of 3 m are comparable in terms of the phenomena observed. 200

A tentative explanation for the different shapes of the capacity functions, also 201

considering the different contexts, may be the following. When there is no clear 202

distinction between the minor and major flow, lane formation is less efficient, since it is 203

more difficult to determine which group is dominant and should be allowed to take a 204

given section of the corridor/facility. This behavior could be particularly strong for 205

small groups of pedestrians, who have only a short time to interact and determine which 206

group should take which part of the corridor. Under these conditions the “chasing” 207

behavior (seen in people moving in the same direction) is less effective since it is not 208

clear who should be followed to reduce collisions. However, over the long run, especially 209

when pedestrians continue to flow at stable conditions, lanes could form separating both 210

directions. In facilities where pedestrians are constantly present, lanes may never 211

disappear throughout the day and may follow traffic regulations. Under these 212

conditions pedestrians entering the facility already know which side/part of the corridor 213

is “dedicated” to their direction. This could be the mechanism leading to the transition 214

into a W-shape function as reported in long time observations. In the study by Kretz et 215

al. a transition from a “V” to a “U” shape is seen during the experiment (see Appendix 216

1 for details) and it can be further speculated that a “W” would be obtained if the 217

experiments were run for a longer time. 218

Phase transition 219

As we noted, in the bidirectional case, transition to congestion is different from the 220

simple unidirectional case; the phenomena occurring are more complex and therefore it 221
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is difficult to consider the fundamental diagram alone. Here, we will see how past 222

studies have investigated phase transition in bidirectional flows. Most of the studies 223

used numerical simulation, which allows to easily vary conditions and study scenarios 224

involving a large number of people in comparatively short time. 225

One of the most complete study on the subject of phase transition has been 226

presented by Nowak and Schadschneider [31], who have used a common Cellular 227

Automata (CA) model to assess the stability of lanes and study more in detail the 228

transition between different flow regimes. In their study, four different flow regimes are 229

considered: free flow, disorder, (stable) lanes and gridlock. Nowak and Schadschneider 230

mostly considered periodic boundary conditions (i.e. pedestrians leaving from one side 231

of the corridor are reintroduced on the opposite side, corresponding to a loop in reality), 232

but Weng et al. [32] also extended the analysis to the case of open boundary conditions 233

(pedestrians leave from the respective side and vanish from the system). For the latter 234

case, they concluded that for certain densities, only two conditions are observed: free 235

flow and perfectly stopped phase (or deadlock). The model by Weng et al. had the 236

particularity to consider pedestrians with different walking speeds and allowed them to 237

observe that “in the stage of lane formation, the phenomenon that pedestrians exceed 238

those with lower walk velocity through a narrow walkway can be found”, which later led 239

them to the conclusion that transition is driven by spontaneous fluctuations which turn 240

the first metastable state into congestion. 241

Muramatsu et al. used a lattice gas model with periodic [33] and open [34] boundary 242

conditions to determine the density at which the low density free flow changes into a 243

high density deadlock. However, in contrast to Nowak and Schadschneider and Weng et 244

al., in their model the transition did not include an organized state with stable lanes 245

and therefore it is not representative of real conditions. Tajima et al. [35] employed a 246

similar model with open boundary conditions to also study the jamming transition (or 247

deadlock formation). In the case of Tajima et al. there is an abrupt transition from 248

motion in lanes to deadlock and free flow is not considered. 249

Alonso et al. [36] created a continuous model which calculates pedestrian motion 250

from Newton’s second law, taking into account viscoelastic contact forces, contact 251

friction and ground-reaction forces. Their model focus on extreme phenomena and takes 252

therefore into account three different regimes which are identified as lane formation, 253

avalanches and clogging. Based on the results of their simulations, Alonso et al. 254

concluded that phase transition should occur earlier, or at lower densities, for the 255

balanced case. 256

Research questions and objectives of this study 257

In light of the discussion on the past literature and the current state of research on 258

bidirectional pedestrian streams, this study aims at investigating several points as listed 259

below: 260

� Whether the capacity–flow ratio function should be described using a “U” or “W” 261

shape and why apparently similar studies arrived to different conclusions. 262

� Whether the capacity function for bidirectional flow can be considered universal 263

or it depends on different factors. If so, which factors are relevant in determining 264

its shape. 265

� Which equation can be used to describe its shape and if there is any model which 266

can help obtaining it (without simply using a common function to fit empirical 267

data). 268

May 7, 2019 8/38



� How is it possible to predict if a bidirectional stream will turn into congestion 269

(without using the fundamental diagram) and which quantities are relevant in this 270

regard. 271

Experimental data and methods 272

Experimental data 273

To investigate more in detail properties of the bidirectional flow and try to answer the 274

above research questions, we created a database consisting of different experiments 275

performed by several researchers. This section will be devoted in explaining those 276

experiments and the methodology used to categorize them into different groups. We will 277

try to limit the details and go straight to the points relevant for this work; readers 278

interested to more specific aspects of each study are referred to Appendix 2. 279

Although there is already a large number of data available on pedestrians 280

trajectories, the type of analysis considered in this work requires very accurate data and 281

therefore the number of usable dataset shrinks quite quickly. In general, criteria 282

employed for selecting a specific dataset for inclusion in the final database were based 283

on scientific suitability (in respects to the objectives of this study), quality requirements 284

and reliability of the source. As a consequence, only datasets considering cases of 285

well-delimited bidirectional flow have been selected and we tried to cover a range as large 286

as possible in regard to density and flow to increase the universality of the conclusions. 287

At the end, only supervised experimental studies could be used, all of them recorded 288

using cameras and later processed using the PeTrack [37,38] software to extract 289

trajectories. Depending on camera and markers configurations an accuracy of up to 1 290

cm can be achieved by extracting trajectories with PeTrack. While technical details 291

(markers used, trajectory extraction method, camera resolution and frame rate) and 292

geometrical aspects (corridor width and length) are very similar among the experiments 293

considered, there are large differences on the experimental procedures. We consequently 294

decided to divide the datasets into 3 categories, which will be also relevant in relation to 295

the objectives of this study. 296

Table 3. Grouping of experimental datasets depending on the type of bidirectional stream considered and
the instructions given to participants.

Single run
Group Case study Time People Instructions

(a) Natural small group interaction 10–20 s ≈ 50 No instructions
(b) Facilitated lane formation (learning process) 1–2 min ≈ 300 Free to choose leaving side (left/right)
(c) Strong obstruction with forced motion 1–2 min ≈ 300 Leaving side determined (no choice)

Table 3 summarizes the most remarkable differences among the 3 types of study 297

considered, Fig 3 provides a schematic description of the experimental 298

procedures/observed phenomena and Fig 4 shows some typical trajectories relative to 299

each group of experiments. 300

Datasets considered in group (a) consist of experiments with a relatively small 301

number of pedestrians walking in a more or less natural environment and without any 302

specific indication on destination or behavior to be followed. A mock corridor was set 303

up over a long distance and participants kept walking in their respective directions after 304

passing each others’ (people had to walk “straight” for about 20-30 m although only the 305

central 10 m are used for data analysis). In those experiments, groups were shuffled 306

during each execution and therefore participants were not able to get any advantage 307

from the multiple repetitions. It is therefore excluded (or very unlikely) that 308
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(a)

(b)

(c)

Fig 3. Types of bidirectional flows considered in this work. (a) represents a
class of supervised experiments with a limited number of participants naturally
interacting while walking through a long corridor (people kept walking even after passing
the central area). No specific instructions were given on how to behave but participants
were asked to simply walk. (b) represents experiments with a larger number of people
flowing into a shorter corridor for 1–2 minutes with free choice to leave either side
(right/left) at the exit. In this case, participants were allowed to exit the corridor from
the side they liked and experiments were repeated under very similar conditions. Most
people left from the right side as experiments were repeated (probably because of their
daily custom). (c) represents a class of experiments where half of the participants were
asked to exit from the left side and half from the right side. Strong interactions were
observed as lane formation was clearly obstructed due to the specific instructions given.

participants were able to develop some form of organization evolving over the time of 309

the experiment (i.e. a long term cognitive process). 310

In (b), participants also had some behavioral freedom; in particular they could freely 311

choice from which side of the corridor to leave after passing through it (in this case 312

people where able to “exit” the corridor after walking in it for about 10 m). This 313

experiment was repeated under very similar conditions: after the first execution, two 314

lanes clearly formed dividing both flows and participants occupied the right side in each 315

direction (experiments of these datasets were performed in Germany which is a 316

right-driving country). At the second execution, participants already learned that 317

forming two lanes would make crossing of the corridor easier and they continued 318

showing this behavior until the last repetition. In some sense the case considered in (b) 319

can be seen as a loop, since each repetition is virtually related with the previous runs. 320

In the experiments of group (c) a very different experimental procedure was used: 321

each pedestrian was asked to leave the corridor from a different side (half left and half 322

right). Therefore, although experiments were repeated under similar conditions, 323

pedestrians did not get any advantage by knowing the experimental setup. In this case 324

lanes could not form (or did not last for a long time) and a sort of diagonal motion was 325

observed, with people entering from the middle of the corridor and trying to exit from 326

both sides. This was the case with the strongest interactions and people obstructing 327
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Fig 4. Bidirectional flow trajectories. Example of trajectories from some of the
cases considered in the three groups. For each case several repetitions were performed
and the example provided here is relative to only one execution; all are relative to the
balanced configuration. Also, total time considered for plotting trajectories is different,
so the number of lines is not relative to the density of pedestrians. Yellow trajectories
are relative to left to right walkers, red to the opposite direction.

each other’s were observed very frequently. 328

Analytical approach and computational methods 329

This section will present the computational methods used in the analysis of the 330

experimental database presented above. In discussing the details, Fig 5 can be used as a 331

reference to understand the relevance of each quantity in regard to the overall study. 332

In general, the analytical approach is based on our previous research (see in 333

particular [39,40]) and on studies from other researchers (for example the works by 334

Saberi et al. [41,42] have been a source of inspiration). The overall process for analyzing 335

pedestrians’ trajectories can be summarized as follows: each case will be divided into 336

small time intervals and for each interval several quantities relative to the smoothness of 337

motion and the degree of self-organization will be computed. Simple operations like 338

velocity or flow calculation will not be described here as they belong to basic methods 339

established in the literature. Density calculation using Voronoi cells has also been used 340

for several years and it is a well-known procedure in pedestrian dynamics and readers 341

may refer to [43] for details. 342

Before considering more detailed aspects, we need to clarify the difference between 343

the concept of congestion and organization, which will be central points in the following 344

discussion. The concept of congestion is closely related with the one of capacity (as 345
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Fig 5. Computational method and relevant quantities. Summary of the
quantities considered in this study and methods used to compute them.

already discussed in the introduction). When a crowd can move for an indefinite time 346

under constant conditions, then the motion can be defined as uncongested. If, for some 347

reasons, it is not possible to keep moving at a constant pace, then we can say that 348

congestion occurred. The concept of organization is slightly different. In a bidirectional 349

flow, a crowd is defined as organized when lanes are clearly defined and interactions 350

occurs only with people moving in the same direction. For instance, a unidirectional 351

flow is by definition organized, but may be congested when the density is too high to 352

allow a smooth motion. Also, a well organized bidirectional stream may become 353

congested if people start overtaking within their lanes. Of course a well organized crowd 354

could help reducing congestion, but this may not be a sufficient condition. 355

Degree of congestion and intrinsic risk 356

To determine the degree of congestion (or in other words the smoothness of motion), the 357

so-called “relative rotation range” has been used 4 and its calculation will be described 358

as follows. To start with, the surface of the corridor (or the section to be studied) is 359

divided into a mesh to allow the computation of the average velocity in x- and 360

y-direction relative to the overall crowd motion in a given time interval, thus creating a 361

velocity vector field like the one presented in Fig 6(a). A mesh having 0.2 m in side 362

length and a sampling time interval of 2.5 s were chosen to allow an accurate 363

description of pedestrian motion under different densities [39]. 364

The rotation range is a measure for the amount of rotation observed in a pedestrian 365

stream derived from the concept of vorticity commonly used in fluid-dynamics 5. As 366

described above, the average velocity is computed in each cell and for each time interval, 367

thus resulting in a vector field ~V (x, y) containing velocities for the cells where 368

pedestrians have transited. Taking the rotational of this vector field will result into: 369

~R(x, y) =

 rx
ry
rz

 = ~∇× ~V (x, y) (2)

where rx and ry are 0 since x- and y-velocities lies on the same plane. As a 370

consequence, information on the amount of rotation is contained in rz only. To make no 371

4The method is analogous to the recently proposed “congestion level” [39], with the only exception
that in this work we are using the whole experimental section as the Region of Interest (ROI).

5This concept is inspired from our previous research, in which we found that rotation is an important
mechanism both on the individual [44] and crowd level [40, 45] and the work by Helbing et el. [18] who
identified “crowd turbulence” as a cause for accidents.
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Fig 6. Velocity representation of bidirectional streams. Different ways of
representing pedestrian speed in the bidirectional flow; the example provided here
corresponds to one experiment of dataset D, figures are generated for a 2.5 s time
interval and a 0.2 m mesh size. The 3 representations are: (a) vector field, (b)
x-velocity (direction of motion) and (c) y-velocity (lateral motion).

distinction between clockwise and anti-clockwise rotation the difference 372

max(rz)−min(rz) is taken over the whole vector field and this difference is defined as 373

the rotation range. When the flow is uniform small values are obtained, with the 374

rotation range growing with the degree of congestion. In other words, the rotation range 375

can be used to judge if pedestrians are moving in a congested way or not. To also 376

account for global velocity fluctuations the average velocity is included, thus defining 377

the relative rotation range as: 378

max(rz)−min(rz)

|~v|
(3)

The relative rotation range allows to define the level of congestion in the 379

experimental area considered and consequently set a threshold for capacity. This aspect 380

will be discussed in detail later while presenting the results. Based on the relative 381

rotation range it is possible to define a further quantity named “crowd danger” which 382

defines the intrinsic risk in pedestrian crowds [39]. This is simply obtained by 383

multiplying the relative rotation range with the density, thus assuming that the risk 384

related with crowd motion increases with both density and degree of congestion. 385

May 7, 2019 13/38



Degree of self organization 386

To define the degree of organization, there are several quantities which can be used in 387

the case of the bidirectional flow 6. In this work, we will consider both the average and 388

the variation in the number of lanes and a quantity derived from the combination of 389

them with the order parameter. 390

The average number of lanes is simply obtained by counting them in each x-position 391

of the previously introduced grid. A lane is defined as a set of cells having the x-velocity 392

in the same direction. Cells containing no information are ignored. The case provided in 393

Fig 6 shows a typical example of a 2-lanes structure. In more chaotic situations (like the 394

hypothetical case illustrated in Fig 7) it is possible that the number of lanes is not the 395

same everywhere and therefore defining an overall average and its deviation may 396

become useful in the analysis. 397

Fig 7. Order parameter. Schematic representation used for the calculation of the
order parameter. Each cell indicates a positive or a negative x-velocity.

However, both quantities are not sufficient to evaluate the degree of organization 398

since a chessboard-like structure (very unlikely but still possible) will result in a zero 399

deviation, thus mistakenly indicating an organized structure in lanes. To avoid this 400

problem, the order parameter will be also used in the analysis. 401

The order parameter has been often used to assess the stratification (or degree of 402

organization) of systems composed of lanes, with applications ranging from colloidal 403

fluids [47] or chemical processes [48] to also include the case of pedestrians [31]. The 404

calculation of the order parameter starts by computing φj for each row j (referring to 405

Fig 7): 406

φj =

(
nleft − nright
nleft + nright

)2

=

(
nleft − nright

n

)2

(4)

where nleft and nright is the number of cells moving to the left and right direction 407

respectively. The sum of nleft and nright obviously leads to the total number of cells n. 408

After computing φj , the global order parameter can be obtained by considering all rows 409

as follows: 410

Φ =
1

m

m∑
j=1

φj (5)

where m is the total number of rows. The order parameter is by definition never 411

negative and it is generally bigger than zero also in the extreme case of random motion 412

7. For instance, it could be inferred (a validation using a Monte Carlo method is 413

provided in Appendix 3) that the expected value for the order parameter in a random 414

configuration having flow ratio r is: 415

6Duives et al. [46] provides an interesting comparison between three different measures using
trajectories resulting from a laboratory experiment and several simulations for the case of bidirectional
flows.

7The order parameter can become zero for perfectly aligned columns, but this configuration is never
observed in real situations.
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〈Φ〉 = 4

(
1− 1

n

)
· r · (r − 1) + 1 (6)

where n is again the number of columns. This clearly shows that there is a 416

dependance between the order parameter and the value we may get for a particular 417

configuration having flow ratio r. In other words, the order parameter does measure the 418

degree of stratification, but does not allow to assess the organizational performance in 419

respect to a random configuration. To overcome this limitation we will define a measure 420

for the disorganization level by combining the order parameter with information on 421

lanes as: 422

Var(Nlanes)

Avg(Nlanes) · Φ
(7)

where Φ is simply the measured order parameter and Nlanes the number of lanes in 423

the different x-positions. Although defining a measure for disorganization may seem 424

unconventional (a measure for organization may seem more logical), the present 425

definition was preferred as it becomes zero for perfectly organized structures (the 426

inverse measure for organization would tend to infinity). 427

Experimental results and discussion 428

We will now discuss the results and see how the different properties of bidirectional 429

streams change depending on the amount of flow in each direction (and also in respect 430

to the flow ratio). Each section will cover one aspect of the diagram presented in Fig 5 431

for the three groups considered in Table 3. 432

Fundamental quantities 433

To start with, we can consider the density, which is one of the most important and most 434

widely discussed property of pedestrian crowds. Fig 8 presents different representations 435

for density for each of the scenario considered in this study. The scatter plot allows to 436

examine the relationship between density and directional flow in a bidimensional way. 437

Given the amount of flow in one direction and the relative counter flow, the average 438

density obtained during the multiple experiments is given. A resolution of 0.075 (m·s)−1
439

has been chosen to allow providing an overall clear yet precise representation. 440

To make the interpretation of the results easier and allow to understand the 441

importance of flow ratio, an additional representation is provided. In the lower part of 442

Fig 8 the average density relative to a particular total flow and flow ratio combination is 443

provided in the form of graph. The line representation can be simply obtained from the 444

scatter plot considering that for a given point the total flow is the sum of both axes 445

while flow ratio is the angle formed with the abscissa. From this point of view, it should 446

be clear that to correctly reproduce the results in a line, different curves for the 447

different levels of flow are necessary. A legend for the different symbols used in Fig 8 is 448

provided in Table 4. The same symbols will be used throughout this section when 449

presenting the results for different quantities. Finally, to make visualization easier a 450

common smoothing spline is used to connect the different points. 451

The results presented in Fig 8 clearly show that there is an evident difference 452

between the three scenarios considered. Maximum densities are higher in both group (b) 453

(facilitated lane formation, in the center) and group (c) (strong obstruction, on the 454

right), which is obviously related to the highest number of participants and the longer 455

execution of each repetition. In case (b) the solid line relative to high levels of flow is 456

missing since data were not sufficient for an accurate description. From the scatter 457
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Fig 8. Density. The same color scale is used for all scatter plots. Interpretation for
the flow ratio representation is provided in Table 4.

Table 4. Legend for symbol and line styles used in presenting the results in relation to flow ratio.

Flow level Total flow Symbol Line style

Low 0.0–0.4 (m·s)−1 Circle Dotted line
Medium 0.4–0.8 (m·s)−1 Square Dash-dot line
Considerable 0.8–1.2 (m·s)−1 Triangle Dashed line
High 1.2–1.6 (m·s)−1 Cross Solid line

representation it is possible to notice that, in particular for case (a), there are three 458

regions which define similar levels of density. A low density area for a total flow below 459

around 0.5 (m·s)−1, a high density area for flow above around 1.2 (m·s)−1 and an area 460

in the middle. 461

However, effect of total flow and flow ratio becomes more evident when the line 462

representation is considered. In case (c), where obstruction is created on purpose, it is 463

seen that density is higher for the balanced configuration and it increases as the total 464

flow gets higher. In case (b), which had a procedure making the creation of organized 465

lanes easier, a different picture is portrayed, with the density in the balanced case being 466

similar to the levels of unidirectional motion (flow ratio 0 and 1) 8. This may show that, 467

as some authors said, an organized bidirectional flow is equivalent to separated 468

unidirectional streams moving in opposite directions. Finally, it is interesting to notice 469

the transition occurring in case (a), which represents a natural interaction where lanes 470

form and dissolve. At low and medium levels of flow the density is clearly lower in the 471

balanced case, but the inverse situation is observed for the high-flow condition. In this 472

case, density seems to level up as total flow increases. 473

Degree of congestion and intrinsic risk 474

We can continue the analysis by considering more complex quantities, with the results 475

for the relative rotation range given in Fig 9. 476

8Except for the case with low levels of flow, where it is not possible to talk of “lanes” since densities
are too low.
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Fig 9. Relative rotation range. The same color scale is used for all scatter plots.
Interpretation for the flow ratio representation is provided in Table 4.

From Fig 9 it is seen that case (b) has very low levels congestion and the effect of 477

flow ratio appears minimal. This is due to the fact that lanes existed for most of the 478

experiment’s duration and were readily formed at the beginning. Under these conditions 479

flow ratio is mostly a measure describing the difference in size between both lanes and 480

qualitative aspects are homogeneous. Case (c) clearly shows that if lanes are not 481

allowed to form then the balanced case is the most congested regardless on the level of 482

flow (except for very low levels). Case (a) again shows some sort of transition and we 483

could argue that the reduction in congestion observed in the balanced case may be a 484

result from the self-organization in lanes. Nonetheless, relative rotation range for cases 485

(a) and (c) has similar values at high levels of flow, meaning that even if lanes form in 486

case (a) the motion within them tend to be quite unstable. 487

But to allow a more consistent comparison between the various cases, the crowd 488

danger (which was defined as the product of density and the relative rotation range) can 489

be used, with results provided in Fig 10. 490

The crowd danger depicted in Fig 10 puts the discrepancies between case (a) and (c) 491

under a different perspective. Although (a) and (c) had similar levels of congestion, the 492

highest densities of case (c) create a higher potential risk for the moving crowd. The 493

combination of density and congestion makes the effect of the flow ratio more evident 494

and the balanced case may be considered two times more dangerous compared to the 495

unidirectional motion. On the other side, the reduction in congestion observed in case 496

(a) in the balanced case appears less important when put into the perspective of 497

potential risk. This may show that lanes do not only need to form but also need to be 498

stable. 499

Degree of self organization 500

To start the discussion on the degree of self-organization, we may consider the average 501

number of lanes, which is a very simple and fundamental characteristic of bidirectional 502

streams. Results for the number of lanes are given in Fig 11 using the usual format. 503

Case (b) represents probably the simplest case to consider. Since formation of lanes 504
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Fig 10. Crowd danger. The same color scale is used for all scatter plots.
Interpretation for the flow ratio representation is provided in Table 4.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Main flow [(m⋅s)
�1

]

C
o
u

n
te

r 
fl
o

w
 [
(m
⋅s

)�

1
]

(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Main flow [(m⋅s)
�1

]

C
o
u

n
te

r 
fl
o

w
 [
(m
⋅s

)�

1
]

(b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Main flow [(m⋅s)
�1

]

C
o
u

n
te

r 
fl
o

w
 [
(m
⋅s

)�

1
]

(c)

A
v
e
ra

g
e

 n
u

m
b

e
r 

o
f 
la

n
e
s

1

2

3

4

5

0 0.5 1

1

1.5

2

2.5

3

3.5

4

Flow ratio

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
la

n
e

s

0 0.5 1

1

1.5

2

2.5

3

3.5

4

Flow ratio

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
la

n
e

s

0 0.5 1

1

1.5

2

2.5

3

3.5

4

Flow ratio

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
la

n
e

s

Fig 11. Average number of lanes. The same color scale is used for all scatter plots.
Interpretation for the flow ratio representation is provided in Table 4.

was facilitated by the experimental procedure, a maximum of 2 lanes are formed in the 505

balanced configuration. Unidirectional flow (flow ratio 0 and 1) obviously form only one 506

lane. In unbalanced configurations lanes also formed but density was much lower in one 507

direction, thus creating long strips of unidirectional motion, which ultimately led the 508

number of lanes to take values between 1 and 2. In case (b) it is also important to 509

notice that discrepancies between different levels of flow are minimal, thus suggesting 510

that lanes formed straight away from the very beginning of the experiment. 511

The picture is clearly different in (c), where the number of lanes grows with the total 512
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flow and reaches a maximum which is well above 2. This shows that the more people 513

entered the corridor the more complex became the organization and the balanced case 514

clearly performed the worst in every condition. It is also interesting to see that the curve 515

for the average number of lanes follows a sort of inverted parabola for all levels of flow. 516

Finally, case (a) shows again a sort of transition: at low levels of flow an inverted 517

parabola is repeated with the balanced case having the highest number of lanes, but as 518

soon as the flow reaches higher levels some sort of self-organization is seen which 519

contributes in reducing the average number of lanes. It has to be remarked, however, 520

that the number of lanes for case (a) is higher than any other case and this despite the 521

relatively smaller width of the corridor. So, while the number of lanes may give some 522

clue on how much organized crowds were, another measure is required to understand 523

better this aspect. 524

In this regard, we can now consider the disorganization level, whose results are given 525

in Fig 12. 526
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Fig 12. Disorganization level. The same color scale is used for all scatter plots.
Interpretation for the flow ratio representation is provided in Table 4.

A first glance at Fig 12 reveals a quite different picture from what observed earlier. 527

In particular, case (a) presents a disorganized region for moderate levels of flow which 528

reaches the maximum around the balanced configuration. Since case (a) represents a 529

situation where two groups of people encounter each other’s in a corridor, the flow 530

during the whole process can be seen as a line originating from the origin and having 531

the slope relative to the flow ratio. The disorganized region represents the moment 532

when lanes form and dissolve, while the organized region seen for high levels of flow is 533

relative to the motion in lanes after groups already formed. From case (a) it is learned 534

that a disorganized and partially congested phase is seen when lanes are being formed, 535

but, if their formation succeed degree of congestion decreases and the level of 536

organization increases. 537

Case (b) presents a quite homogenous scenario, with low levels of disorganization 538

seen almost everywhere. Unbalanced configurations tend to be less organized, but data 539

also tend to be scarce for those configurations. The results for case (c) show that when 540

lanes do not form (or are not allowed to form), then the level of disorganization remains 541

moderate independently on the total flow. In (c) it is also interesting to notice that the 542
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balanced case is disorganized independently on the level of flow. This shows that when 543

lanes do not form, the balanced case does not show an improvement. On the other side, 544

unbalanced configurations tend to be disorganized at low levels of flow but the 545

difference with the balanced case get minimal as the total flow is increased. 546

To summarize, in the analysis above which involved several quantities, we generally 547

confirmed what different researchers speculated in regard to the bidirectional flow: 548

when lanes form the bidirectional motion is split into several streams moving in 549

unidirectional way. Our results clearly showed that in the balanced configuration lower 550

levels of congestion and an higher degree of self-organization are reached when lanes are 551

formed. If lane creation is made difficult by external effects (which in this case was 552

related to the experimental procedure) than the balanced case is similar to unbalanced 553

configurations. We also found that in the steady-state cases (i.e. where conditions did 554

not change during the experiment) an inverted parabola generally describes the average 555

number of lanes. 556

Numerical modeling of capacity 557

Based on the qualitative and quantitative results from the previous section we will 558

model different aspects of bidirectional flow, finally leading to the definition of a 559

function for capacity taking into account the transient effect of lane formation. 560

In the above discussion and the literature overview we have seen that bidirectional 561

flow capacity is in general not linear. In our previous research [40], we observed that 562

anticipation is very weak when both groups of pedestrians encounter in counter flow 563

situations and other studies described the motion of pedestrians in packed conditions as 564

a percolation process in which pedestrians “diffuse” through the counter flow [25,49]. 565

Although the densities relative to the transition into congestion are not extremely high, 566

we can assume that similarities exist when it comes to the formation of congestion and 567

its relation with flow ratio. 568

(a)

(b)

(c)

Fig 13. Theoretical grid for estimating the effect of counter flow. Examples
of row configurations with n = 10 cells, gray cell indicates counter flow. In case (a) it is
not possible to pass from one side to the other in neither direction. Case (b) and (c)
represent “open” cases in the right and left direction respectively. Please note that
letters used here do not refer to the 3 experimental groups considered earlier.

Under these conditions, the corridor (or section) where pedestrians walk can be 569

considered as a grid like the one shown in Fig 13. We will define the main flow as 570

moving from left to right (white cells in Fig 13) and the counter flow moving in the 571

opposite direction (gray cells). In each cell, a pedestrian is assigned to the counter flow 572

with a probability r (the probability of belonging to the main flow is therefore 1− r) 9. 573

9There is a number of models from different disciplines which consider interactions among cells.
Examples are the Ising model for ferromagnetism in physics or the several variants of vehicular models
used for traffic engineering, many of them considered within the broad context of Cellular Automata. In
addition, Yanagisawa [50] considered a game-theoretical approach to model interaction among cells for
the case of bidirectional flow. In our model, cells are independent and the behavior is purely stochastic.
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In more practical terms (and to link it with the previous discussion) we can call r the 574

flow ratio. 575

We can define the “open path” probability as the probability to have all cells 576

pointing in the same direction (either left of right). Fig 13 shows some examples for 577

possible configurations. It could be inferred (a numerical validation is given in 578

Appendix 3) that the probability of having an “open path” in either direction is: 579

popen path(r, n) = (−1)n · [(r − 1)n + (−r)n] (8)

with n being the number of cells. Fig 14(a) shows the plot of Eq (8) for n = [1, 6]. As 580

it can be intuitively guessed, the minimum is found at 1
2 (i.e. balanced configuration). 581
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Fig 14. Open path probability and expected number of lanes. Different grid
sizes are considered.

Since we want to use this function to model capacity, we need to consider some 582

transformations to adapt popen path to real data. We can therefore define as qmax the 583

maximum capacity and this will be equal to the capacity for unidirectional flow (2.20 584

(m · s)−1 will be used here). The lowest transition is happening at the balanced flow 585

configuration, so, as a consequence, the value qmin will be assigned to a flow ratio 1
2 . 586

This leads to the following form for the function describing capacity: 587

qtot(r, n) = popen path(r, n) · α+ β (9)

β =
qmin − pmin · qmax

1− pmin
(10)

α = qmax − β (11)

where pmin is equal to popen path( 1
2 , n) and corresponds to the minimum value of 588

popen path. This expression may be useful to model the overall dynamics toward a 589

chaotic counter flow, but we know that humans do have the capability to organize 590

themselves in lanes. 591

The formation of lanes plays an important role in bidirectional streams and the 592

average number of lanes had an inverted parabola. To model this aspect we can now 593

consider a bidimensional grid with similar characteristics to the model considered to 594

compute the open path probability. We may now consider a model consisting of n×m 595

cells as the one shown in Fig 15. The theoretical model discussed here is conceptually 596

similar (and inspired) from the grid considered in the above experimental discussion 597

We will see that although the model presented here is quite simple, it is sufficient to describe qualitatively
the more complex mechanisms occurring in bidirectional pedestrian streams.
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(see Fig 6(b) and Fig 6(c)), although cell size is irrelevant here and only its number is 598

considered. As for the previous case, each cell is assigned to left or right direction with 599

probability r (being the flow ratio). 600

Fig 15. Grid used for the calculation of lanes. Bidimensional grid representing
pedestrians moving in opposite directions in a counter flow. Lanes are counted for the
two selected boxes.

We now want to know what is the expected number of lanes 〈Nlanes〉 given the flow 601

ratio r. As we know, a lane is typically defined as a group of people walking in the same 602

direction. If a grid like the one presented in Fig 15 is provided, it is possible to compute 603

the number of lanes in each column by counting the number of subsets of adjacent cells 604

moving in the same direction (the two examples provided should help understanding the 605

concept). In the worst (or least organized) case the number of lanes correspond to the 606

number of cells. Under perfect alignment a minimum of two lanes is formed (excluding 607

unidirectional flow). It could be inferred (with a numerical validation given in Appendix 608

3) that the expected value for the number of lanes is: 609

〈Nlanes(r,m)〉 = 2 · (1−m) · r · (r − 1) + 1 (12)

where m is the width of the “corridor” as indicated in Fig 15. Eq (12) is plotted in 610

Fig 14(b) for different values of m. A quick comparison with the experimental results 611

shows that Eq (12) allows to describe the average number of lanes in relation with the 612

flow ratio. Obviously Eq (12) cannot describe all the cases, since it is an upper bound 613

for the expected number of lanes in case of random motion. However, it is interesting to 614

notice that the agreement between the theoretical expression and the experimental 615

results is particularly good for case (c), which indeed represented a situation where 616

self-organization was not possible (or very difficult). 617

In the theoretical analysis so far we have obtained an equation (Eq (9)) which suits 618

well for the expressions of capacity showing a “U” shape and we were able to estimate 619

the number of lanes from a theoretical perspective. The question remains on how to 620

describe the “W” shape which often appeared in the literature. From a qualitative point 621

of view we have seen in the experimental results that the formation of lanes contributes 622

in increasing the organization and making the motion smoother. While it is very 623

difficult to predict under which circumstances lanes form as this depends on a number of 624

factors that are difficult to model (environment, presence of leaders, signage, familiarity 625

with the location...), we can assume from a purely stochastic point of view that lanes 626

are easier to form when the expected value is higher. For instance, creating 2 lanes in 627

an hypothetical corridor having m = 5 cells, will be easier in the balanced configuration, 628

where the expected number of lanes is 3, compared with a configuration having r = 0.1 629

where the expected number of lanes is 1.72. We also know that when a bidirectional 630

stream get organized in lanes, the capacity will become equal to the unidirectional case, 631

since interactions are only occurring within pedestrians moving in the same direction. 632
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The above considerations lead to the conclusion that the increase in capacity given 633

by the formation of organized lanes must be proportional to the expected number of 634

lanes. Since lanes are easier to form in the balanced case, the gain in capacity given by 635

the creation of organized and stable lanes must be higher compared to unbalanced 636

configurations. We can therefore derive a modified version of qtot taking into account 637

the formation of organized structures. This function can be obtained by summing up 638

qtot with a transient term derived from the general form for the number of lanes, leading 639

to the following expression: 640

qtot(r, n, τ) = qtot(r, n) + k · r · (r − 1) · τ (13)

where τ is a transient term and k is a scaling factor to be determined using 641

empirical data. By setting the minimum at a flow ratio of 1
2 and the maximum for the 642

unidirectional cases (and leaving τ = 0), it can be obtained: 643

k = 4 · (qmin − qmax) (14)

The left side of Fig 16 shows the unsteady form of qtot plotted using typical values 644

for n, qmin and qmax and letting the transient term τ vary from 0 to 1. τ contains all 645

the different factors which could lead to the formation of organized lanes. In general, we 646

can say that this process requires time (hence the name τ), but other factors such as 647

training or signage (keep left/right or guided patterns) may contribute in increasing the 648

value of τ and therefore improving the efficiency of the balanced flow. In other words, τ 649

can be seen as a factor determining the degree of coordination among pedestrians; the 650

higher τ it gets, the easier will be the formation of lanes and the higher will be the 651

capacity of the balanced configuration. 652

To check the validity of the proposed function in describing the transient capacity of 653

bidirectional streams we may use the relative rotation range to define a threshold for 654

congestion. The graphs on the right side of Fig 16 show a categorization using two 655

different thresholds of the relative rotation range based on the experiments with small 656

group interactions (case (a)). A threshold of 1.00 m−1 is used in Fig 16(a) and 3.00 m−1
657

in Fig 16(b). Case (a) generally showed an uncongested motion and since the 658

experiment represented a dynamic process it is not possible to fix a unique value for 659

capacity. It is however seen that Eq (13) allows to define a minimum level for 660

congestion in both cases, thus allowing a variable definition of capacity which takes into 661

account the contribution of lanes. 662

From Fig 16, it is also possible to see that the function proposed here allows to 663

reproduce most of the equations reported in the literature (see also Appendix 1 for 664

details). In fact, by varying τ the shape of the function changes from the “U” (τ = 0) 665

which was associated with short-term disorganized interactions to the “W” (τ = 1) 666

which was associated with a semi-organized motion in lanes. Understanding under 667

which conditions the transient term start playing an important role and how to predict 668

if the flow will result into an organized form around the balanced configuration could be 669

an interesting topic for future research. Also, a more complete definition for capacity 670

could list qmin, n and τ for different scenarios, thus allowing to define capacity for 671

bidirectional streams with better precision and allow a more accurate design of 672

pedestrian facilities. This would also allow a more flexible and systematic definition of 673

levels of service. 674

Bidirectional flow fundamental diagram 675

Finally, we want to conclude our discussion by comparing a particular form of the 676

fundamental diagram, obtained by performing a complete analysis of our database, with 677
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Fig 16. Transient capacity function and ability to depict transition to
congestion. In the right side congested areas are given using red crosses,
non-congested with green circles. In (a) a threshold of 1.00 m−1 for the relative rotation
range is used to define congestion, in (b) the threshold is 3.00 m−1. Parameters used in
the equations are: n = 25, qmin = 0.75 (m·s)−1 and qmax = 2.2 (m·s)−1 for (a) and
n = 5, qmin = 0.80 (m·s)−1, qmax = 2.2 (m·s)−1. In the graphs on the left τ is varied
from 0 to 1 (0 being the darkest line and 1 the lightest).

the one provided by Flötteröd and Lämmel [51]. In their study, a theoretical (and 678

three-dimensional) form of the FD for the bidirectional flow was derived. The authors 679

used experimental data (roughly corresponding to our dataset E) to obtain the 680

parameters defined in their functions. Fig 17 presents both the FD by Flötteröd and 681

Lämmel and the one resulting from our database. 682

Although the number of points not covered by the analysis discussed here is rather 683

large, it can be noted that, in general, the FD by Flötteröd and Lämmel reproduce well 684

the characteristics of bidirectional flows. In particular, the maximum flow for the 685

unidirectional case is correctly predicted being at about 1.5 m−2 and the change in flow 686

along the symmetry line is also well depicted until the same density (1.5 m−2). 687

However, when the density grows above 1.5 m−2, Flötteröd and Lämmel predict that 688

over the symmetry line a somewhat linear drop in flow should occur, but this behavior 689

is not observed in the FD resulting from our database. This can be related to the fact 690

that Flötteröd and Lämmel used a limited number of experimental data to calibrate 691

their model and therefore it becomes specific of the dataset used. Since, in general, 692

qualitative features seem to be well described in their model, on-purpose experimental 693
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Fig 17. Bidirectional flow fundamental diagram. Comparison between
experimentally obtained data and the particular FD by Flötteröd and Lämmel. The
whole database is used to create the experimental fundamental diagram.

data could help increasing the reliability of their function. 694

Conclusions 695

In this paper, we presented a throughout analysis on the characteristics of bidirectional 696

pedestrian streams, finally leading to the definition of an equation for capacity which 697

takes into account transient effects related to lane formation. 698

By comparing three cases, one where lane formation is hindered, one where lanes 699

form easily and another one where lanes are quickly formed and dispersed, we have seen 700

that when lanes are formed the bidirectional motion is split into a number of 701

unidirectional streams moving in an orderly manner thus greatly improving capacity. In 702

this regard, we have also confirmed that, as previous research speculated, the capacity 703

of the balanced configuration is lower only when lanes are not formed, but quickly 704

grows to eventually become equal to that of unidirectional streams once organized lanes 705

get a stable structure. 706

A practical consequence of the above facts is that the balanced case is the one which 707

requires the biggest attention, since the capacity to move people in both directions 708

strongly depends on the self-organization of the crowd itself, which may be very difficult 709

to influence, especially in critical situations. These considerations translate into two 710

main requirements in regard to design and management of pedestrian facilities. On one 711

side, they highlight the necessity to provide sufficient (but not redundant) guidance in 712

pedestrian facilities, thus allowing a natural and smooth formation of lanes under 713

changing conditions. On the other side, they draw attention to the risk existing when 714

dense crowds need to move in opposite directions. In those cases, even the best practice 715

in guidance and crowd control may not be sufficient and a drastic fall in capacity occurs 716

when those measures fail. In brief, flow separation is an important requirement for 717

scenarios where emergencies may happen. 718

From a theoretical aspect, the function for capacity proposed here allows to describe 719

a variety of works presented in the literature and define a framework for categorizing 720

bidirectional streams in a more systematic and accurate way. Although an absolute 721

form defining values and parameters to be used is not provided, we defined methods 722

and practices which can help to create more accurate definitions to be used in the Level 723

of Service. For example, the framework presented here may help defining the efficiency 724

of different signage strategies by measuring the τ values reached in different contexts. 725
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Also, long term observations of real situations may help defining a maximum level for 726

congestion, which has the potential of becoming a universal criterion for determining 727

capacity. 728

With this said, our study also suggested that it is not yet possible to summarize 729

pedestrian flows into universal criteria determining human motion, since environmental 730

and cognitive processes largely determine the outcome of pedestrian behavior. 731

Relationship between people and the environment cannot be only based on geometrical 732

features and, although we may be able to measure the degree of congestion, the reasons 733

leading to it need to be considered on a case-by-case basis. However, for the specific 734

case of the bidirectional flow, which represents a combination of stochastic (as our 735

model showed) and cognitive aspects, it could be possible to summarize common 736

environmental/cognitive elements and their contribution to capacity in a more 737

systematic way, thus making the design of pedestrian facilities more accurate and 738

reliable. 739

Appendix 1: Literature on bidirectional flow 740

This appendix contains more details on the works considered in the literature review. 741

Readers interested in details regarding the context of each study and the equations 742

presented from the different authors can find the relevant information in this section. 743

This appendix is organized considering in historical order the studies that are the most 744

relevant for the topics presented in this work. Readers interested in even further details 745

are addressed to the relevant works by each author. 746

Navin and Wheeler 747

The first efforts to quantify the effects of the counter flow were reported by Navin and 748

Wheeler [22]. In their study, the authors noted that when a small number of pedestrians 749

was walking in the minor flow, they occupied a proportionally larger size of the walkway 750

compared to the major flow. As the flow became balanced (close to a flow ratio of 0.5), 751

both groups tended to form organized lanes equally taking half of the walkway. 752

Weidmann [17] quantified this effect in terms of capacity reduction as illustrated in 753

Fig 18(a). 754

Cheung 755

In the digital era, data acquisition became easier and Cheung was able to collect a large 756

database of pedestrian speed and flow at different pedestrian facilities in Hong 757

Kong [23]. The effect of counter flow was quantified in a number of situations, including 758

stairways in both directions (up and down), escalators and different types of walkways 759

(“passageways” in his work). For the case of flat walkways (which had different widths), 760

Cheung observed (similarly to Navin and Wheeler) that in the presence of counter flow 761

the opposing traffic contributes in reducing the total capacity, but when the flow 762

becomes balanced, pedestrians in each direction share the width of the walkway equally. 763

Cheung was able to provide an empirical function for the relation between capacity and 764

flow ratio 10: 765

qtot(r) = quni
[
1− (a0 + a1r + a2r

2 + a3r
3 + +a4r

4 + +a5r
5 + a6r

6)
]

(15)

where quni is the unidirectional capacity (given as 1.53 (m·s)−1) and ai for i = [0, 6] 766

are empirically obtained parameters. It is important to remark that the function by 767

10The function provided here is obtained by combining the relative reduction in capacity and the
unidirectional capacity provided by Cheung [23].
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Cheung is defined for 0 < r < 1, which means that it is not continuous for the transition 768

from unidirectional to bidirectional flow as shown in Fig 18(b). In the case of Cheung, 769

the stability around the balanced flow is remarkable and practically the same capacity 770

of unidirectional flow is obtained. 771

Lam et al. 772

Some years later Lam et al. used the same approach to investigate the case of 773

crosswalks (always in Hong Kong), creating a large database including speed and flow 774

for two different locations (a commercial area and a shopping facility) [24]. Facilities 775

considered by Lam et al. had a very large width (7.2 m and 9.0 m respectively). Based 776

on their observations they derived an empirical function for the effective flow (defined 777

as the total flow relative to each direction), given by: 778

qeff (r) = b0 + b1r + b2r
2 + b3r

3 (16)

where r is the flow ratio and b0, b1, b2 and b3 are experimentally obtained 779

parameters. To obtain the bidirectional flow capacity (the sum of flows in both 780

directions) the following transformation is required 11: 781

qtot(r) = r · qeff (r) + (1− r) · qeff (1− r) (17)

= c0 + c1r + c2r
2 + c3r

3 + c4r
4 (18)

with c0, c1, c2, c3 and c4 given by: 782

c0 = b0 + b1 + b2 + b3 (19)

c1 = −2b1 − 3b2 − 4b3 (20)

c2 = 2b1 + 3b2 + 6b3 (21)

c3 = −4b3 (22)

c4 = 2b3 (23)

Using the empirical parameters provided by Lam et al. it is possible to plot the 783

relation between capacity and flow ratio as shown in Fig 18(c). Qualitatively the result 784

is very similar to the previous studies although the advantage gained when the flow 785

becomes balanced is less marked. 786

Kretz et al. 787

To study more in detail phenomena related with bidirectional flows, Kretz et al. [30] 788

performed a supervised experiment in a corridor (slightly less than 2 m in width). Two 789

groups of pedestrians (67 participants in total) waited in designated areas located 20 m 790

from each other’s inside the corridor. After the start signal was given, both groups 791

walked toward each other’s crossing in the middle of the corridor. Video recordings were 792

taken at three different positions and were manually analyzed. The results of their 793

study on counter flow effects are given in Fig 18(d) (“start”, “center” and “end” refer to 794

the three relative positions inside the corridor). In contrast to the previous researchers, 795

they found that bidirectional flow performs better than unidirectional one in any 796

11The interpretation of the function proposed by Lam et al. is rather controversial and there is no
agreement between researchers (the author did not provide an official explanation and the presentation
is rather unclear). The transformation proposed here is based on different qualitative remarks made in
their work.
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Fig 18. Effect of flow ratio (literature review). Effect of the counter flow on
bidirectional flow capacity. Geometries (crosswalk, sidewalk, corridor...) considered vary
from author to author.

situation 12. This conclusion may be partially related to the very narrow corridor used 797

(less than 2 m, allowing to form typically 2 or 3 lanes) and the relative small group size 798

considered (especially when compared with the field studies presented earlier where 799

thousands of people were observed). These particular conditions may also explain the 800

remarkable capacity obtained by Kretz et al. exceeding 3 (m·s)−1, which is the highest 801

among the different studies considered here. As a consequence, the study by Kretz et al. 802

represents a particular (but yet significant) case among the ones considered here. 803

12The study by Kretz et al. did not specifically consider capacity as the main goal, but such values
can be obtained from their results.
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Wong et al. 804

Wong et al. [26] have studied different configurations of cross-flows in a supervised 805

experiment, with the bidirectional (counter) flow considered as the most extreme case of 806

the ones studied. 90 participants were recruited for the experiment and experimental 807

procedures were similar to the ones of Kretz et al. (i.e. two groups of pedestrians 808

waiting in separate areas before starting). The section considered was 3 m in width. 809

Wong et al. developed an algorithm to extract pedestrians’ position at each video frame, 810

which allowed them to work with a large number of accurate data. The database was 811

fitted with a function they proposed to predict pedestrian group velocity based on 812

density ρtot and intersecting angle φ. With vfree being the free walking speed, their 813

function is given by: 814

vmono(ρtot, r, φ) = vfree exp
[
−θ1ρ2tot

]
· exp

[
−θ2(1− cosφ) ((1− r)ρtot)2

]
(24)

with θ1 and θ2 being experimentally determined parameters. The bidirectional 815

counter flow case is obtained by setting φ = 180◦, which leads to the velocity for each 816

monodirectional group: 817

vmono(ρtot, r) = vfree exp
[
−θ1ρ2tot

]
· exp

[
−2 · θ2 ((1− r)ρtot)2

]
(25)

which can be promptly converted into pedestrian flow by multiplying with the 818

corresponding density and flow ratio as follows: 819

qmono(ρtot, r) = vmono(ρtot, r) · ρtot · r (26)

Finally, the capacity can be computed by summing up both monodirectional 820

components: 821

qtot(ρtot, r) = qmono(ρtot, r) + qmono(ρtot, 1− r) (27)

Fig 18(e) shows the behavior of the above function for different densities by using 822

the numerical values provided by Wong et al. (vfree = 1.034 m/s, θ1 = 0.075 m4 and 823

θ2 = 0.019 m4). In the central section (around 0.5) a behavior similar to the work by 824

Kretz et al. is observed, but the function is continuous at the transition between uni- 825

and bidirectional flow. Wong et al. predict that bidirectional flow is always performing 826

worse than unidirectional one. 827

Alhajyaseen et al. 828

Alhajyaseen et al. [27, 28] developed what they defined as a drag force model based on 829

empirical observations of signalized crosswalks of different dimensions (all were larger 830

than 4 m in width), from which they were able to gain trajectories of crossing 831

pedestrians. Their capacity function for the flow in one direction takes the following 832

form: 833

qmono(r) = d0r
d1(1− r)d2 (28)

where d0, d1 and d2 are experimentally determined parameters. Again, we can 834

obtain the function for the total flow by summing up both monodirectional components 835

as follows: 836

qtot(r) = qmono(r) + qmono(1− r) = d0 ·
[
rd1(1− r)d2 + (1− r)d1rd2

]
(29)
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Alhajyaseen et al. obtained different parameters for three age groups: pupils, adults 837

and elderly. Their capacity for the three age groups is given in Fig 18(f). Their function 838

shows similar properties with the ones previously presented: numerical values are close 839

to the ones by Kretz et al. and function shape resembles to the one proposed by Wong 840

et al. However, the function by Alhajyaseen et al. tends to infinity for unidirectional 841

configurations, thus not allowing a continuous transition to the bidirectional case. 842

Feliciani and Nishinari 843

In our previous research, a bidirectional flow moving inside a subway station has been 844

studied by analyzing video recordings obtained from multiple cameras [25]. Based on 845

the difference between the (in)flow of pedestrians entering a test section and the 846

(out)flow of the ones leaving it, we were able to make qualitative and quantitative 847

distinctions on the different flow regimes and make a rough estimation of capacity. 848

However, we were not able to determine with sufficient accuracy the relationship 849

between flow ratio and capacity and we simply concluded that a non-linear relationship 850

is expected and balanced case should have the lowest value. 851

Zhang et al. 852

Very recently, Zhang et al. [29] performed a controlled experiment for the case of 853

crosswalks. Conditions similar to reality were recreated in laboratory, with pedestrians 854

waiting at opposite sides of a section which was later crossed by both groups 855

simultaneously (a setup similar to the one of Kretz et al. and Wong et al.). Investigated 856

crosswalk had a length of 7.5 m and a width of 4.0 m. Number of pedestrians on both 857

sides was changed to study flow ratio, with a maximum of 100 pedestrians in total. 858

Similar to some previous studies, Zhang et al. concluded that capacity in one direction 859

is given by a cubic function: 860

qmono(r) = e0r
3 + e1r

2 + e2r (30)

where e0 = 8.7 (m·s)−1, e1 = −12.4 (m·s)−1 and e2 = 5.9 (m·s)−1 are empirical 861

values. As usual the total capacity is obtained by summing main and counter flow, 862

resulting in: 863

qtot(r) = qmono(r) + qmono(1− r) = (2e1 − 3e0)r2 − (2e1 + 3e0)r + (e0 + e1 + e2) (31)

which is a simple quadratic equation. Based on their results, Zhang et al. concluded 864

that the capacity of bidirectional flow in crosswalks is close the one for unidirectional 865

flow in corridors. Concerning lane formation, Zhang et al. interestingly noted that it 866

neither depends on the number of pedestrians in bidirectional flow nor on the flow ratio. 867

Appendix 2: Details on considered experimental 868

datasets 869

This appendix provides details on the datasets used to investigate bidirectional streams 870

throughout this work. Readers interested in the reasoning behind the 3-group division 871

made up to analyze the data should find the answers while reading this section. Readers 872

interested in small details and trying to understand subtle differences among the results 873

presented for the 3 types of bidirectional flow can also find some clues by checking this 874

appendix. For further details, readers are advised to verify the content of each study by 875

directly referring to the work of each author (references are provided in Table 5). 876
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Technical details of the experimental data 877

Table 5 and Table 6 present some of the characteristics of the experiments included in 878

our database. 879

Table 5. Experiments considered in the empirical database. In providing the total time for each dataset we
are referring to that portion of the experiments which has been used in data analysis (therefore excluding
breaks and dead times).

# Authors Reference Sensor Participants Runs Total time

A Feliciani and Nishinari [40] Single camera 54 16 12 min
B Feliciani and Nishinari [44] Single camera 50 11 8.5 min
C Gorrini et al. [52, 53] Single camera 54 21 13 min
D & E Zhang et al. [19, 41,42,54] 2 cameras ≈ 300 22 25 min

Experimental datasets A–C are given in the supporting information, datasets D and E are openly available at [55]. In the
experiments by Zhang et al. (D & E) images from two different cameras were combined to cover the full length of the corridor.

Table 6. Scenario dimensions, crowd properties and social structure for the considered cases.
“Side/destination” refers to the condition if pedestrians were aiming to a particular side of the corridor
(left/right) or just intended to cross it (side/destination irrelevant).

Corridor size Maximum
# Side/destination Social group Length Width Density Flow Flow ratio

A Free choice Individuals 10 m 3.0 m 1.5 m−2 2 (m·s)−1 0, 0.17, 0.33, 0.50
B Free choice Individuals 10 m 2.4 m 1.5 m−2 2 (m·s)−1 0, 0.25, 0.50
C Free choice Mixed 10 m 3.0 m 1.7 m−2 2 (m·s)−1 0, 0.17, 0.33, 0.50
D Free choice Individuals 8 m 3.6 m 2 m−2 1.7 (m·s)−1 0.4, 0.5
E Fixed Individuals 8 m 3.0 m & 3.6 m 3 m−2 1.8 (m·s)−1 0.5

Many studies specifically considered the balanced bidirectional flow, so most of the 880

data regard cases with a flow ratio close to 0.5. The number of pedestrians involved in 881

each experimental campaign varies greatly from study to study, with the lowest figure 882

being of 50 participants and the highest slightly over 300. Most of the studies focused 883

on pedestrians behaving individually, with the exception of the study in C, which 884

specifically considered a given number of pairs among the participants (about 40% 885

behaved in pairs). 886

As a whole, the database created allows to study the dynamics of bidirectional flow 887

from a density of about 0.1 m−2 up to a maximum of 3 m−2. Pedestrian flow also 888

covers the range of values typically reported in the literature, with a maximum value of 889

about 2 (m·s)−1. Geometrical dimensions of the corridors were quite similar (width 890

changes from a minimum of 2.4 m up to a maximum of 3.6 m), which represent an 891

advantage for comparisons but may limit the universality in the conclusions. 892

One of the most distinguishing element between the different cases concerns the 893

destination choice. For the cases A–D participants to the experiments were able to 894

choose freely the side from which leave the corridor after traversing it (either right, left 895

or straight). Under this condition, lanes can easily form and tend to be stable. In those 896

cases, pedestrians were simply asked to walk toward the exit (on the opposite side of the 897

corridor) without any specific order. 898

In the particular case of dataset E, half of the participants were asked to leave the 899

corridor from the left side and the other half from the right side (thus creating a sort of 900

cross flow inside the corridor). In this case, pedestrians were therefore aiming to a 901

particular destination and had to cross the corridor in an oblique direction. 902

It is also important to briefly mention that geometries were not the same for all the 903
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(a) (b )

Fig 19. Experimental configurations. Test section (central corridor) and waiting
(starting) areas for different types of experiment.

experiments and different strategies were used to calibrate the flow ratio when needed. 904

In A–C two opposite located waiting areas with equal surface were created as shown on 905

both sides of Fig 19(a). Participants were uniformly distributed inside each waiting area 906

with the number being changed for different configurations. The flow ratio was therefore 907

changed by changing the density of both groups and keeping the overall density 908

constant. Zhang et al. (D & E) used a different strategy: two waiting areas with a small 909

exit were created at both sides of the corridor studied as shown in Fig 19(b). By 910

changing the width of the opening on each side, the flow for each direction was also 911

changed, thus allowing them to have a control on it and also influencing the flow ratio. 912

Finally, we also have to acknowledge some limitations on the experimental 913

conditions represented in our database. In particular, we are aware that heterogeneity is 914

considered only in a minimal extent and the same can be said in regard to social 915

structures. Campanella et al. [56] clearly showed that desired speed, body size and 916

reaction time can affect flow efficiency and Gorrini et al. [57] arrived to similar 917

conclusions in relation to grouping patterns. Since the studies considered here mostly 918

deal with adult pedestrians (mostly young people) and grouping with no more than two 919

persons, further investigations would have to be done to determine the impact when a 920

large population is composed, for example, by elderlies or pupils (although Alhajyaseen 921

et al. only found minor quantitative differences in this regard). 922

Grouping criteria and underlying reasoning 923

Based on the discussion provided in the main text and the specific characteristics of 924

each experiment given above, the different datasets were combined into three categories 925

as shown in Table 7. 926

Table 7. Grouping of datasets with similar properties.

Group Case study Dataset(s)

(a) Natural small group interaction A & B & C
(b) Facilitated lane formation (learning process) D
(c) Strong obstruction with forced motion E

The categories reported in Table 7 are not relative to geometrical, traffic (flow, 927

density and speed) or social properties, but they rather refer to the methodological 928

procedure used in the experiments. 929

Experiments in group (a) considered a small number of participants instructed to 930

walk in a natural way in a mock corridor. Interactions were observed for a short time, 931

since both groups rapidly passed through each other’s. Also, because of the geometrical 932

setup of the experiments (a long corridor in which participants need to walk “straight” 933

for a long time) and the re-shuffling of participants performed by the staff in the start 934

area, each case may be considered separately (i.e. it is very unlikely that participants 935

developed a preferential strategy in crossing the corridor by executing the different 936

experiments). 937
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This was not the case in group (b), since participants rapidly learned that taking 938

half of the corridor for each direction is the optimal solution. In fact, during the first 939

execution at low densities it is seen that participants hesitate on which side of the 940

corridor take after exiting the door in the waiting area. However, partially thanks to the 941

low density, participants rapidly understood that taking each half of the corridor was 942

beneficial in reducing the number of collisions. Since experiments were performed in 943

Germany, which is a right-driving country, the choice to take each right half of the 944

corridor came as a natural instinct. After exiting from the right side, participants 945

returned in the waiting room. For the ones having performed the experiment already, it 946

was clear that directly moving to the right side upon entering the corridor was the best 947

solution to avoid unwanted collisions. 948

However, in the experiments of group (c), although the number of participants and 949

the geometrical setup was identical to the experiments in group (b), the particular 950

instructions contributed in creating a very different outcome. In fact, because of the 951

instructions provided (half of the people were asked to exit from the left side and half 952

from the right), people were not able to get organized and lanes were not observed if not 953

locally for a short time. The experiments of group (c) needs therefore to be considered 954

separately as the instructions given to participants were specifically designed to have an 955

unnatural behavior where people are not able to act as they would in a normal 956

condition. In some way, (a) and (b) are similar in terms of the instructions given, but 957

they differ in terms of number of participants, geometrical setup and the possibility to 958

learn (and “get better” during the experimental campaign). Group (c) mostly differs in 959

terms of experimental procedure. 960

Given the above discussion, we judged reasonable considering the 3 categories 961

separately and investigating what are the differences among them in regard to the 962

concepts of lane formation and phase transition which are the main topics of this work. 963

Appendix 3: Monte Carlo validation of probabilistic 964

equations 965

The equations provided in the manuscript have not been obtained empirically, but were 966

derived analyzing results from simple computer simulations. Owning to the fact that 967

statistical distributions have common elements in the equations describing them, we 968

computed numerical results using a simple code and later tried to guess the equation 969

following those data. Later, we systematically tested the empirical expression running a 970

computer code with an increasingly larger number of iterations. While this is not a 971

general proof, results presented below clearly showed that numerical results converge to 972

analytical expressions as the number of iterations is increased. 973

In the specific, we wrote a computer code randomly creating the configurations of 974

Fig 13 and Fig 15 according a given flow ratio. More in detail, each cell was assigned 975

with a left direction when a random number was lower than flow ratio r and with the 976

right direction instead (if the random number was bigger or equal than r). We 977

performed simulations by changing the flow ratio from 0 to 1 in 0.1 steps. The number 978

of elements (cells) was changed from 1 to 10 in single steps for the unidimensional 979

equations (open-path probability and number of lanes). In the case of the expected 980

order parameter a bidimensional representation is required and therefore we changed 981

both length and width from 1 to 5 cells in single steps. The number of tests (i.e. the 982

number of combinations tested using random numbers) was varied from 103 to 107 by 983

performing exponential steps (i.e. the exponent was increased from 3 to 7). The error 984

was computed taking that relative squared difference between the results obtained by 985

simulation and the analytical result (obtained using the equation provided in the 986
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manuscript). A single error is taken by considering all combinations of flow ratio and 987

grid size. Results for this Monte Carlo analysis are presented in Table 8 and Fig 20. 988

Table 8. Error between the exact solution and the numerical computation for different expressions
introduced in the manuscript using a Monte Carlo method.

Equation Iterations
Name (meaning) Number 1’000 10’000 100’000 1’000’000 10’000’000

Open-path probability 8 609.56% 13.312% 1.3514% 0.30697% 0.018119%
Expected number of lanes 12 1.5699% 0.14759% 0.013429% 0.0015203% 0.00011596%
Expected order parameter 6 6.6407% 0.59696% 0.075762% 0.0087961% 0.00066378%
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Fig 20. Graphical representation of the error between empirical
expressions and numerical results. In all the cases a clear convergence is seen as
the number of iterations increases.

The three equations converge with the same speed in logarithmic terms, thus 989

showing a quick convergence toward the analytical solution. Open-path probability has 990

the highest error, but this is below 1% for one million iterations and rapidly fall below 991

0.1% for ten millions. Equations for the expected number of lanes and the order 992

parameter already have small errors for low iterations and errors below 0.001% are 993

reached for ten millions iterations. In general, it is clearly seen that in all the cases the 994

numerical results converge to the analytical one when the number of iterations is 995

increased (error gets close to zero), thus showing that equations provided in the 996

manuscript are very likely to be correct (since this is not a general proof, we cannot 997

affirm it in absolute term). 998

Acknowledgment 999

This work was supported by JST-Mirai Program Grant Number JPMJMI17D4, JSPS 1000

KAKENHI Grant Number 25287026, the Doctoral Student Special Incentives Program 1001

(SEUT RA) and the Foundation for Supporting International Students of the University 1002

of Tokyo. In addition, the authors would like to thank all the researchers which openly 1003

provided their data, thus making this study possible. We finally need to thank Andrea 1004

Gorrini, Luca Crociani and Daichi Yanagisawa who contributed to the organization of 1005

some of the experiments discussed in this study. 1006

May 7, 2019 34/38



References

1. Canetti E, Stewart C. Crowds and power. Macmillan; 1962.

2. Fruin JJ. Pedestrian planning and design. Metropolitan Association of Urban
Designers and Environmental Planners; 1987.

3. Transportation Research Board. Highway capacity manual. Transportation
Research Board; 2016.

4. Chen P, Zeng W, Yu G, Wang Y. Surrogate safety analysis of pedestrian-vehicle
conflict at intersections using unmanned aerial vehicle videos. Journal of
advanced transportation. 2017;2017. doi:10.1155/2017/5202150.

5. Feliciani C, Crociani L, Gorrini A, Vizzari G, Bandini S, Nishinari K. A
simulation model for non-signalized pedestrian crosswalks based on evidence from
on field observation. Intelligenza Artificiale. 2017;11(2):117–138.
doi:10.3233/IA-170110.

6. Zeng W, Chen P, Nakamura H, Iryo-Asano M. Application of social force model
to pedestrian behavior analysis at signalized crosswalk. Transportation research
part C: emerging technologies. 2014;40:143–159. doi:10.1016/j.trc.2014.01.007.

7. Zeng W, Nakamura H, Chen P. A modified social force model for pedestrian
behavior simulation at signalized crosswalks. Procedia-Social and Behavioral
Sciences. 2014;138:521–530. doi:10.1016/j.sbspro.2014.07.233.

8. Zeng W, Chen P, Yu G, Wang Y. Specification and calibration of a microscopic
model for pedestrian dynamic simulation at signalized intersections: A hybrid
approach. Transportation Research Part C: Emerging Technologies.
2017;80:37–70. doi:10.1016/j.trc.2017.04.009.

9. Liu M, Zeng W, Chen P, Wu X. A microscopic simulation model for
pedestrian-pedestrian and pedestrian-vehicle interactions at crosswalks. PLoS
one. 2017;12(7):e0180992. doi:10.1371/journal.pone.0180992.

10. Junior JCSJ, Musse SR, Jung CR. Crowd analysis using computer vision
techniques. IEEE Signal Processing Magazine. 2010;27(5):66–77.
doi:10.1109/MSP.2010.937394.

11. Glas DF, Miyashita T, Ishiguro H, Hagita N. Laser-based tracking of human
position and orientation using parametric shape modeling. Advanced robotics.
2009;23(4):405–428. doi:10.1163/156855309X408754.
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55. Jülich Research Center. Database of pedestrian trajectories in controlled
experiments; 2009. http://ped.fz-juelich.de/db/.

56. Campanella M, Hoogendoorn S, Daamen W. Effects of heterogeneity on
self-organized pedestrian flows. Transportation Research Record: Journal of the
Transportation Research Board. 2009;2124:148–156. doi:10.3141/2124-14.

57. Gorrini A, Bandini S, Vizzari G. Empirical investigation on pedestrian crowd
dynamics and grouping. In: Traffic and Granular Flow’13. Springer; 2015. p.
83–91. Available from: https://doi.org/10.1007/978-3-319-10629-8_10.

May 7, 2019 38/38

https://doi.org/10.1007/978-3-319-10629-8_30
http://hdl.handle.net/2128/4898
http://ped.fz-juelich.de/db/
https://doi.org/10.1007/978-3-319-10629-8_10

