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Abstract

In this article we present an improved version of the Cellular Automata floor
field model making use of a sub-mesh system to increase the maximum den-
sity allowed during simulation and reproduce phenomena observed in dense
crowds. In order to calibrate the model’s parameters and to validate it we
used data obtained from an empirical observation of bidirectional pedestrian
flow. A good agreement was found between numerical simulation and ex-
perimental data and, in particular, the double outflow peak observed during
the formation of deadlocks could be reproduced in numerical simulations,
thus allowing the analysis of deadlock formation and dissolution. Finally, we
used the developed high density model to compute the flow-ratio dependent
fundamental diagram of bidirectional flow, demonstrating the instability of
balanced flow and predicting the bidirectional flow behavior at very high
densities. The model we presented here can be used to prevent dense crowd
accidents in the future and to investigate the dynamics of the accidents which
already occurred in the past. Additionally, fields such as granular and active
matter physics may benefit from the developed framework to study different
collective phenomena.
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1. Introduction

Dynamic of human crowds exhibits many mysterious and fascinating as-
pects which have attracted researchers of several disciplines. In particular,
the processes leading to the occurrence of accidents in dense crowd are still
not completely understood and ways to prevent those situations are mostly
summarized as general guidelines and generic constructional norms.
Studies on the dynamic of human crowds stretch many decades back, but it
is only in the last decades that researchers have focused on computer sim-
ulations to predict the behavior of pedestrians in a vast range of scenarios.
Motivation for the use of numerical simulation lies in the fact that it is possi-
ble to study scenarios which could not be reproduced experimentally, either
because of the risks related to potential injuries or because of the difficulties
arising in hiring a large number of participants during supervised experiments
(in order to obtain significant experimental data several hundred people are
required, but reported studies usually employed few hundred or even less
participants [1, 2, 3, 4], while simulations can deal with several thousand
people).
Most of the models used for dense crowd are based on physical princi-
ples, with granular and active matter physics having the largest contribu-
tion [5, 6, 7]. In some case (especially when the crowd is not extremely
dense) fluid-dynamic was found being accurate enough to describe macro-
scopic pedestrian motion. In addition, statistical mechanics and theories
based on many-body systems have been useful to understand the charac-
teristics of crowds composed of a large number of people. In this regard,
research on pedestrians dynamic has a mutual relationship with research on
collective phenomena, with discoveries in both disciplines contributing to the
overall understanding.
In particular, because of the difficulties arising in obtaining realistic data
during supervised experiments (considering that participants are aware that
an experiment is being carried out) and the privacy concerns related with
the use of public surveillance cameras for empirical observations, granular
matter physics has been useful in gaining precious experimental evidence of
different situations; especially in the case of evacuation through a narrow
exit [8, 9, 10, 11].
However, granular matter physics is not always directly comparable with
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human crowd. Therefore, considering the above reasons, research on ex-
treme scenarios (deadlock, bottlenecks, accidents, panic outbreak,...) has
been mostly focused on two directions: computer simulations and research
involving animals, which enable to reproduce dangerous scenarios while min-
imizing the ethical and juridical concerns (in this context experiments have
been reported using different sort of animals [12, 13, 14, 15]).
Numerical models used in computer simulations can be divided into contin-
uous and discrete models (although different categorization criteria may be
considered). To the former ones belong the fluid-dynamic methods [16, 17, 18]
and the social force model [19, 20]. Among discrete models, multi-agent sys-
tems [21, 22, 23] and Cellular Automata (CA) [24, 25, 26] are the most widely
used.
In some cases simulation models were validated using realistic empirical data
gained from supervised experiments under low densities. In particular previ-
ous experimental research has dealt with bidirectional counter-flow [2, 4, 27],
cross-flow at intersections and evacuation through an exit door [28, 29].
In this study we will focus on the CA model, because of its simplicity and its
capability to easily include behaviors observed on pedestrians in real situa-
tions. CA has proven being a powerful tool to describe collective pedestrian
behavior in many scenarios and its relative simplicity and the limited number
of rules implemented in it allows very short computational time. Various phe-
nomena observed in reality could be described using CA models, including
the arching at the exit door [30], lane formation [31] and the faster-is-slower
effect [32]. However, because of the constraints imposed by the use of a
discrete mesh, special models had to be developed to overcome some of the
limitations. In this frame a real-coded lattice gas model [33] was derived to
improve the accuracy of diagonal motion, a force field was added to assess the
potential danger in a dense crowds [34], different velocities were included to
account for the velocity distribution usually observed in pedestrians [35, 36]
and a finer mesh was proposed to increase the spatial accuracy [25].
However, CA has still the limitation of allowing simulation only for a limited
density, namely the one imposed by the size of its mesh, typically set at 0.4
m × 0.4 m [37]. When each cell of the model has been filled, the maximum
density allowed by CA is reached. In general, the mesh used in CA models is
sufficient for simulating most of the scenarios observed in pedestrian crowds.
In particular, free-flow is accurately modeled and lane formation observed in
reality is reproduced in simulation with satisfactory accuracy. On the other
hand, in congested situations, local densities may go beyond the limit im-
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posed by the CA mesh. Densities up to 8.4 persons m−2 have been reported
[38] in controlled experiments (under safe conditions), implying that higher
densities (possibly higher than 10 persons m−2) can be observed in panicking
crowds resulting in injuries or death.
In this study we present a sub-mesh implementation of the CA model which
increases the mobility of the pedestrians in dense crowd, thus allowing the
simulation of highly congested scenarios. Different sub-mesh approaches have
been reported in relation with the Boltzmann lattice used in fluid-dynamic
[39, 40, 41], but the method reported here represents a new approach which
enables to overcome the low-density limits imposed by the use of the stan-
dard discrete mesh in CA.
In order to validate the model we compared the simulation results with ex-
perimental data obtained during morning rush hour in a crowded subway
station in central Tokyo.
Given the interdisciplinary approach used, applications of the model pre-
sented here go beyond the field of pedestrians dynamics and granular matter
physics in particular may benefit from it, especially for research related to
phenomena like percolation, aggregation and diffusion.

2. Model description

In the case of pedestrian bidirectional flow, the use of a discrete mesh
in CA models results in a limited mobility for colliding pedestrians. As
a consequence, even at low flows, a complete stop may be observed when
pedestrians coming from both directions encounter [42]. To avoid this prob-
lem, some authors proposed to introduce an exchange probability to avoid
head-on conflicts [24, 43]. This solution works well in a way that pedestrians
are less likely to get stuck in front of each others. However, if the exchange
probability is set too high, the model tends to overestimate the capability
of pedestrians to get through a crowd coming from the opposite direction.
On the other hand, when set too low, the full stop previously discussed may
easily occur. To overcome this problem, and to correctly reproduce the be-
havior observed in dense crowds, we decided to introduce some changes to
the original CA mesh.
In fact, although most of the fundamental rules governing pedestrian mo-
tion are independent on the environment, the very limited visibility found in
dense crowds strongly affects pedestrians’ mobility, thus requiring a different
treatment compared to free-flow conditions.
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In particular, we tried to reproduce the pushing behavior usually observed
when a deadlock is formed in bidirectional flow. In reality, we observed that
people usually stop once they are not able to continue further, but, after a
while, they try to find out a route through the opposite coming crowd. By
doing so, they move through the dense crowd hoping to get out from the
opposite side as soon as possible.
In our model, we gave therefore the pedestrians the possibility to find a way
through the crowd by using some additional positions created in the mid of
adjacent cells.
The standard mesh used in CA in the case of Neumann neighborhood is given
in Figure 1(a) (Manhattan metric was used to compute distances). The cen-
ter of each cell is given in dark dots and each cell is delimited by border lines.
By using the totally asymmetric simple exclusion process (TASEP) only one
pedestrian per cell is allowed and thus each cell can be empty or occupied
by only one pedestrian at its center.
In our sub-mesh implementation (represented in Figure 1(b)) we introduced
additional nodes located in the middle of adjacent cells. Coherently with the
use of a Neumann neighborhood we prevented the edges of the cells from
being used as sub-mesh locations and we limited the sub-mesh positions to
the center of each side.
Even in the sub-mesh implementation TASEP rules apply and therefore a
maximum of one pedestrian is allowed in each position. By using the im-
proved model a maximum number of 3 pedestrians per cell is theoretically
allowed (one at the center and a total of 2 at the sub-mesh boundaries, con-
sidering that pedestrians lying at the boundaries are shared with neighbor
cells).

By only creating additional positions we would simply have a CA model
with finer mesh and the maximum allowed density would reach 18.75 persons
m−2 (3 times the normal density of 6.25 persons m−2 in the case of a 0.4 m
× 0.4 m mesh). However, we want to set the maximum density allowed in
our model to about 10 persons m−2, avoiding unrealistically high densities.
This would not be possible in a standard CA model without changing the
mesh size.
As introduced above, the motivation for using the sub-mesh structure is not
only about increasing the maximum density, but we also want to account for
the different behavior found in low and high-density crowds. In fact, once
inside a dense crowd, because visibility and mobility quickly degrade, the
type of motion usually observed in free flow cannot be recognized anymore.
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(a) Standard mesh. (b) Sub-mesh implemen-
tation.

Figure 1: Neumann neighborhood mesh used in the CA model, standard mesh and the
implementation proposed in our study. Overall size of the mesh is unchanged in the
sub-mesh approach as sub-locations are introduced in the edges.

After entering a dense crowd cluster, pedestrians simply try to move to the
exit in a sort of zigzag motion, without any preference on turning left or
right, but only taking any free space they spot nearby.
Therefore, while high density can be simply obtained by scaling the size of
the mesh, a more comprehensive approach is required if behavior of the crowd
in dense crowd has to be considered. Because we wanted to keep the basic
structure of the floor field model (which is successful in predicting low den-
sity behavior), we decided to add an overlay grid which can deal with dense
crowd. In order to do this a special set of rules which determine under which
conditions this additional grid can be used is required.
Keeping in mind that parallel update is used to compute pedestrians’ posi-
tions, this set of rules is given as follows (a schematic summary is provided
in Figure 3) :

1. During free-flow (in case one or more of the neighbor cell are free)
pedestrians will move from one center to the other (as schematically
illustrated in Figure 2(a)). In the case of the right walking individual
(thus moving from left to right) given in Figure 2(a), that pedestrian
may move forward, turn right or stay in the same position. In the
previous literature some discussion has been made about the necessity
to include the back step in bidirectional flow models. Some authors
[35, 44, 45] argue that because of the intrinsic nature of bidirectional
flow, back stepping has to be avoided and some showed that the use
of back stepping will have little influence on the results [43]. On the
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other side some authors [46] stressed on the importance of the use of
back step to make the model more reasonable. Although experimental
observation and personal experience suggest that back stepping should
not be required, we decided to introduce it at first. However we found
its influence not significant (or negative) and therefore we excluded
back stepping in the final model presented here.
Pedestrians select the target cell (forward, left, right or wait/stay) ac-
cording to the transition which has the highest probability (calculation
of this probability will be described later).

2. After having waited a time larger or equal to the maximum waiting
time twait in the same position, if free-flow movement from center to
center is still not possible, pedestrians are allowed to move to one of
the neighbor sub-mesh locations (see Figure 2(b)). In reality, in this
case, a dense crowd has already formed thus limiting the motion of
the pedestrians. By giving them the alternative of the sub-mesh, an
improved mobility can be achieved.
However, to avoid unrealistic high densities, we limited the use of the
sub-mesh by imposing the following additional rule: one pedestrian
is allowed to move to a sub-mesh if and only if the total number of
pedestrians in the target cell (center plus the four sub-mesh locations)
is less than a selected maximum value nmax. If nmax is set to 1, we will
have the standard CA model (only one pedestrian per cell allowed in the
center). By setting it equal to 5 each sub-mesh location is used. Values
included between 1 and 5 allow to control the maximum local density
reached during simulations. Non-integer numbers for nmax can be used
by creating a floor in which the average nmax value corresponds to the
sought setting, while each cell takes individual integer values randomly
chosen between the upper and lower integer close to nmax.
The introduction of the waiting time twait allows to reduce the walking
speed when entering and moving inside a dense crowd (by decreasing
the moving frequency, speed is also decreased). In fact, as the waiting
time before making the next step must be larger or equal to twait, by
setting twait >= 1 pedestrians have to wait at least one step before
moving to each sub-mesh location (the condition pedestrian waiting
time >= twait must be satisfied). Therefore setting twait = 1 means
that pedestrians can move every second iteration. As a consequence,
although the step length in diagonal motion is longer compared to
straight motion, the overall walking speed is reduced because of the
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reduced moving frequency.

3. After having moved in a sub-mesh position (corresponding to a dense
crowd in reality), pedestrians can move diagonally in a zigzag mode
(see Figure 2(c)) by respecting the two rules introduced earlier (i.e.
moving only after having waited twait time steps or more and only if
the target cell has a total number of pedestrians lower than nmax).

4. If an empty cell-center is spotted, pedestrians can choose to move there
directly (without waiting) as in the case of free-flow (see Figure 2(d)).
Again, as in all the other cases, the maximum total number of pedes-
trians per cell nmax cannot be exceeded. In case both a sub-mesh and
a cell-center pedestrians aim to move to a free cell-center, priority is
given to the sub-mesh pedestrian. This is related with the observation
that pedestrians leaving a dense crowd tend to be more motivated in
moving forward compared to pedestrians which are just trying to enter
the crowd.
As an exceptional case, a back-step is allowed in this case, but only
after waiting longer than twait + 1. We found this necessary to avoid
the formation of local jam clusters, which require the half back-step to
dissolve. However, even in the most congested situation, the use of this
option accounted for about 2% of the total distance traveled.
After re-entering a low-density region by moving to a cell center, pedes-
trians can move again in a free-flow motion by walking from center to
center during each time step.

Calculation of the transition probability is performed based on the floor-
field model. Two fundamental fields are used for this calculation: a static
floor field, which is based on the distance from the exit or the destination, and
a dynamic floor field, which is based on a virtual trace (a sort of pheromone)
left by pedestrians during movement (a detailed description of the floor-field
model in case of pedestrian bidirectional flow is given in [4]). This virtual
trace left by moving pedestrians can decay with time and diffuse to neighbor
cells (for a detailed description of the dynamic floor field [47] is suggested).
In addition to the classical static and dynamic floor fields, to increase the
accuracy of our model, we used the anticipation [4] and the wall [47] floor
fields. Therefore, by considering the different floor-fields and the TASAP
exclusion rule, the transition probability for a cell (center) at position i, j
can be computed as:
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(a) Motion in case of free-
flow.

(b) Start pushing af-
ter having waited long
enough.

(c) Moving inside a dense
crowd.

(d) Leaving the dense
crowd.

Figure 2: Pedestrian’s motion in case of a dense crowd by using the sub-mesh implemen-
tation.
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Is motion to cell center possible? 

Yes 

Move to cell center 

Waiting time at the same 

position ? 

Any sub-mesh location with 

number of pedestrians 

available? 

Move to sub-mesh 

No 

Yes No 

Yes No 

Wait 

Wait 

Figure 3: Schematic review of the transition rules in the sub-mesh implementation.

pi,j =Nξi,j exp(−kSSi,j) exp(kDDi,j) exp(−kAAi,j)

exp(kWWi,j)(1− φi,j)
(1)

with N being the normalization parameter, ξi,j the obstacle parameter
(0 if cell (i, j) is a wall or obstacle cell, 1 otherwise), Si,j , Di,j , Ai,j, Wi,j the
values of the static, dynamic, anticipation and wall floor fields, kS, kD, kA, kW
their corresponding sensitivity parameters and φi,j the occupancy parameter.
In the case of the sub-mesh implementation the occupancy parameter will
be 0 if the number of pedestrians in all the positions of cell (i, j) is less then
nmax and 1 otherwise. In mathematical notation:

φi,j =

{

0, total pedestrians in cell (i, j) < nmax.

1, otherwise.
(2)

In the case of sub-mesh, the transition probability is a combination of the
floor-field values of the adjacent cells.

Considering Figure 4 with a right-walker in the center, the transition
probability for a left turn can be computed as:
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Figure 4: Transition probability in the case of sub-mesh motion.

pi,j+ 1

2

=Nξi,j+ 1

2

exp(−kS
Si,j + Si,j+1

2
)

exp(kD
Di,j +Di,j+1

2
) exp(kW

Wi,j +Wi,j+1

2
)

(1− φi,j+1)

(3)

with the notation being the same of the previous equation and index
1

2
indicating the position of the sub-mesh location. This means that the

transition probability for a left turn to the left sub-mesh will be given by the
transition probability computed by using the average value of the different
floor-fields in the current and the left target cell. The same apply to the
right and the forward sub-cells. In other words, the pedestrian will move
to the sub-mesh closest to the cell that would have the highest transition
probability if empty.
It has to be remarked that the anticipation floor field was omitted in the
above equation; the obvious reason being that the anticipation of movements
for the pedestrians coming in the opposite direction makes no sense in a dense
crowd with very limited visibility.
Finally, we decided to keep the exchange probability used in some CA models.
However, to adapt it to our model, we used the following special rules:

1. A pair of pedestrians heading to opposite destinations (here left and
right walkers) may choose to exchange their position (see Figure 5) with
a probability pE ∈ {0, 1} only after having waited at the same position a
total time greater than 2·twait time steps. For this reason, the exchange
probability used here is different from the one previously used in other
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studies. Here, even setting an exchange probability equal to 1 will
not result in an instantaneous exchange, because a pair of pedestrians
will have to wait more than 2 · twait time steps before being allowed
to consider an exchange (the value of 2 has been chosen intuitively
based on the fact that 2 pedestrians are involved). By setting twait

relatively large, pedestrians are likely to move to alternative locations
before considering a position exchange.

2. Position exchange can take place for a pair of opposite walking pedes-
trians which are both at the center or alternatively in the center and in
one sub-mesh position. In case 3 pedestrians are aligned in both cells’
center and the middle sub-mesh, then exchange takes place only for the
pairs located at minimum distance (cell center/sub-mesh pair).

Figure 5: Cell exchange for pedestrians having opposite destination.

The use of the position exchange rule may seem in contrast with the sub-
mesh system presented here. In fact, setting nmax sufficiently high, complete
stops are very unlikely to occur. However, we observed that adding the ex-
change probability to our sub-mesh model can increase the accuracy of the
results, both from a qualitative and quantitative point of view (details will
be discussed in the results section).
This can be explained considering the fact that the sub-mesh implementa-
tion allow a temporary increase in local density and enhance the mobility in
dense crowd, but it is a relatively slow process acting as a buffer accumu-
lating pedestrians coming from opposite directions. A combination with the
position exchange allows keeping the maximum density to reasonable limits
while providing a solution to quickly dissolve the crowd.
Update procedure is performed using the parallel-update rule [48], i.e. target
position is reserved before actually moving each pedestrian. In case of con-
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flict, i.e. multiple pedestrians wishing to move to the same position, one of
the pedestrians targeting that position will be chosen with equal probability.
The scheme followed in the simulation process is summarized in Figure 6.

Compute transition probability 

Decide target cell for each pedestrian 

Perform position exchange if allowed 

Resolve conflicts 

Move pedestrians 

Add dynamic floor field 

Decay and diffuse dynamic floor field 

Compute anticipation floor-field 

Figure 6: Process flowchart for the simulation of pedestrian’s bidirectional flow.

At first, for each pedestrian, its corresponding transition probabilities
are computed. Based on these probabilities a target cell is chosen (this
may be its current cell if the current position results having the highest
probability). Later, pedestrians which are eligible for position exchange are
identified and exchanges eventually take place. As a next step, conflicts for
the same position are resolved and pedestrians are moved into their new
position. In the final steps the dynamic floor field is added and later decayed
and diffused. Finally, the anticipation floor field which will be used in the
next time step is computed.

3. Parameters estimation and simulation results

A bidirectional flow model using the rules described above was imple-
mented in the NetLogo open source software [49]. The model consisted of
an horizontal corridor 6.2 m in width and 12.2 m in length. Pedestrians can
enter on one side of the corridor and leave from the other side, thus forming

13



either unidirectional (when pedestrians enter only from one side) or bidirec-
tional flow. Because two kind of walkers are present in the model, namely
left- and right-walkers, two different static fields had to be used. The static
field of left walkers decreases from right to left and reaches a value of 0 at
the exit on the left side. The static field for right walkers acts in the opposite
direction, decreasing from left to right and becoming 0 in the exit at the
right side. Dynamic field is also specific to each type of walker, reproducing
the fact that pedestrians going in one direction follow only other pedestri-
ans walking in the same direction. On the other side, the anticipation field
acts between the two different kind of pedestrians, with left-walkers trying
to avoid collisions with right-walkers and the opposite situation. Finally, the
wall field is the same for both type of walkers, as both left- and right-walkers
try to avoid being too close to the wall.
In order to estimate the parameters to be used in the model, data obtained
from an empirical observation were employed for calibration. A corridor-like
section in a subway station in central Tokyo was analyzed during rush-hour
to obtain the bidirectional flow resulting in the narrow section considered
(details for the empirical data acquisition and treatment are given in [50] 1).
A small difference exists between the geometry of the corridor used during
empirical observation and the model used for simulation, with the corridor
referring to experimental data being slightly larger on the left side. However,
since congestion was observed in the right side of the corridor (where the
width is the same in both experimental and numerical models), the approx-
imation used in the numerical model (with both sides having equal width)
can be considered accurate enough to correctly reproduce the phenomena
observed in reality.
The empirical data set consists of in- and outflow data for the observed
corridor at different moments during the rush-hour period considered. To
estimate the parameters to be used in the numerical simulation model, we
used the experimental inflow on each side of the corridor as simulation input
and we computed the outflow resulting in the exit located at the opposite
side. Results for the total in- and outflow and the density under normal and
crowded conditions are given in Figure 7 and Figure 8 respectively.

1Note: not all the results presented in the empirical study could be used for comparison
with simulation, because, in some cases, lanes partially formed before the entrance of the
corridor, thus making the setup of boundary conditions unfeasible.
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Figure 7: Comparison between experimental and simulated flow.
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Figure 8: Comparison between experimental and simulated floor density.
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The dotted blue line represents the average simulation result, with the
blue region along it giving the standard deviation resulting from the several
simulation runs (500 for each case). The bold blue line is the experimental
result recorded during observation. Simulated density here is defined as the
overall number of pedestrians in the corridor section divided by the total
surface of the corridor itself; in- and outflow is intended as the sum of each
quantity on both sides of the corridor. Experimental density is derived from
the cumulative curves representing the cumulative total number of pedestri-
ans which entered and left the section analyzed, considering that the corridor
was empty at the beginning (for details see [50]).
In the case of flow results, it is important to remark that although the ex-
perimental inflow is taken as input for the simulation, some small differences
exist between the inflow actually achieved during simulation and the one ex-
pected. This can be explained considering the fact that experimental flow
curve was filtered to remove sampling noise, thus resulting in a continuous
graph. In the numerical model, to reproduce a given flow, a discrete number
of pedestrians need to be introduced, which may result in small differences
between expected and obtained curves. This is particularly visible for sud-
den inflow changes at low inflow levels, such between consecutive peaks. In
general, however, differences between the cumulative must-be inflow and the
one obtained accounted for less than 1-2%.
Dotted red lines in Figure 7 represent the average outflow obtained from sim-
ulation with the background being the standard deviation resulting among
all simulations runs. The thick red line represents the experimental result.
As shown in Figure 7 and Figure 8, in general, a relatively good agreement
is found between experimental and simulation results, with agreement of
the density curves being particularly good. Qualitatively the most relevant
changes are correctly reproduced in all the cases, with the quantitative values
being also in satisfactory agreement. In particular, the double peak observed
during the formation of deadlock is reproduced in the numerical simulation
(see Figure 7(b)), although the changes between both peaks appear smaller
compared to the experimental result (especially concerning the decrease of
the outflow, which, although observed in simulation, is much smaller com-
pared to the experimental result).
This characteristic could be reproduced due to the higher mobility given by
the sub-mesh model presented here. In fact, although overall density reaches
about 4 persons m−2, during the formation of deadlock (see Figure 8(b)),
local densities were higher than 6 persons m−2. In this regard, the sub-mesh

17



implementation was found being a useful method to allow motion under
dense crowd conditions, although its efficiency for higher densities (above 6
persons m−2) or different geometrical configurations has to be checked if new
experimental data for those conditions will become available.
It is important to remark that a slightly different set of parameters had to
be used for the two cases, for which values are given in Table 1. Free walking
velocity was set at 1.4 m/s to correspond with the measurement performed
during the observation and in line with the values reported in the literature
under similar conditions [51, 37].

Table 1: Parameters used in the simulation model for the different scenarios. The 2.8-value
for nmax was obtained by setting different nmax values for each cell (namely 2 or 3) and
having the floor average corresponding to the sought setting.

Parameter Normal conditions Dense crowd

kS 8.5 13.0
kD 6.0
αD 0.25
βD 0.25

kA 8.5 13.0
dA 4

kW 0.75

pE 0.23 0.35

nmax 2.8
twait 1

In Table 1 kS, kD, kA, kW , pE, nmax and twait are the model’s parame-
ters described in the previous section, while αD and βD are respectively the
diffusion and decay of the dynamic field and dA is the anticipation distance
(for details refer to [4]).
The parameters which had to be adapted depending on the situation are all
related to the way pedestrians behave under different conditions. In partic-
ular it can be observed that a large kS had to be used in dense crowd (when
a deadlock was formed). This can be explained by considering the fact that
in order to cross the corridor, pedestrians need to counteract the pressure
formed by the large counter-flow. In other words more effort is required to
cross the corridor under congested dense crowd compared to normal condi-
tions. It can be observed however, that the required increase of kS is related
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with the maximum observed inflow (being slightly less than double). In this
sense, linking the parameter kS with the incoming flow may be useful in ob-
taining a model capable of accurately simulate different scenarios.
Parameter kA, related with the anticipation floor field, had to be adapted to
the different flow conditions as well. Interestingly we found that, by setting
kA equal to kS, besides obtaining quantitative good results a fairly natural
behavior can be observed during simulation by following the motion of pedes-
trians. In this regard, the sensitivity parameters which need to be adjusted
can be reduced to one as kA can be safely set equal to kS.
Finally, exchange probability pE had to be adapted to the different conditions
to account for the fact that close position exchange occurs more frequently
in dense crowd compared to low density conditions. Again, the optimal pa-
rameters found for pE in both cases show a relationship similar to the ratio
of the maximum inflow observed in the main peak. This may suggest that
the most important parameters have a relationship with the total incoming
flow. However, a more detailed investigation would be required to confirm
this fact.
We can now look more in detail into the behavior of pedestrians in different
situations. First we wish to analyze the motion of pedestrians under normal
conditions, like in the scenario considered in Figure 7(a). Considering that
the simulation is performed stepwise, the movement at each iteration can be
categorized as follows:

1. Forward motion: direction did not change from the previous iteration.

2. Waiting: position has not changed since the previous iteration.

3. Rotating: position and direction are different compared to the last
moving iteration.

4. Position exchange: pedestrian changed its position with someone else.

When a pedestrian leaves the corridor the number of steps for each action are
converted into time and those figures are combined with other pedestrians
leaving at the same time. In Figure 9 is represented the average time required
to cross the corridor from side to side divided into the different actions given
above.

The total crossing time is the average time required to cross the corridor
from side to side and can be obtained by summing up the time necessary for
the different actions. It clearly grows up when a large counter-flow is encoun-
tered. The time spent moving forward is almost constant because most of
the pedestrians move forward for a distance which is close to the horizontal
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Figure 9: Average time required for different actions while crossing the corridor in normal
conditions.

distance of the corridor (free walking speed is constant in our model). Small
variations can be observed in case one pedestrian will have to walk for a short
distance toward the wall to a avoid a collision, thus walking forward for a
longer distance compared to the minimum required to cross the corridor.
Concerning the waiting and rotation times, it can be observed that they
both follow a common path by peaking in the most crowded moment. The
increase in overall crossing time can therefore be attributed to an increase of
both values.
Finally, we wish to consider the average number of position exchanges re-
quired to cross the corridor for each pedestrian, given by the the black line
in Figure 9 (with the corresponding scale given on the right side). Clearly,
during normal conditions, position exchange is not a relevant phenomenon
(less than one position exchange is observed on average).
We can now analyze the more crowded scenario (Figure 7(b)), for which the
behavioral timing analysis is given in Figure 10. As one would expect, during
the formation of deadlock the overall crossing time grows, eventually requir-
ing about one minute to cover the corridor distance in the worst situation.

It is interesting to notice that there is a substantial difference between
the scenario illustrated in Figure 9 and Figure 10. In fact, during deadlock
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Figure 10: Deadlock formation analyzed using the time required for different actions.

formation waiting time and rotation time are not coupled anymore. As in-
dicated in Figure 10 at first there is a steep increase of the waiting time,
which later eventually decreases in a two 2-steps fashion. On the other side
the rotation time slowly grows from the beginning of the deadlock forma-
tion throughout the whole duration, until finally quickly dropping when the
deadlock is dissolved. This indicates that the dissolution of a deadlock is
related to an increased mobility of the pedestrians, while its formation is
connected with a large number of people having to stop to avoid collisions.
Consequently, guiding pedestrians along preferential directions may be useful
in avoiding the initial stop created by the incoming large counter-flow.
During deadlock formation position exchange plays a more important role
(compared to the previous case), with a maximum value of about 3 posi-
tion exchanges reached during the maximum flow. This shows that although
the increased mobility given by our model, exchange probability cannot be
completely ruled out.

4. Extended bidirectional flow fundamental diagram

We will now use the simulation model developed here to obtain some
complex fundamental diagrams for bidirectional flow.
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First, we wish to compare the fundamental diagram obtained by simulation
with experimental results from the literature. By using the model described
above we performed simulations for a balanced bidirectional flow by changing
the inflow setting from 0.05 to 2.50 persons / m · s (in 0.05 (m·s)−1 steps).
Parameters for the dense crowd were used here and simulations were each
performed for a total time corresponding to 5 minutes in the reality (with
computational time being clearly much shorter). Resulting total outflow and
density were recorded in the fundamental diagram and simulation results
were compared with the semi-experimental data provided by Weidmann [37]
in his meta-study (see Figure 11) 2.
The fundamental diagram of Weidmann has been chosen among the several
ones available in the literature because of the following reasons:

1. It is the only one that provides data for relatively high densities, i.e.
above 4-5 persons m−2, while most of the experimental studies are
limited to free flow scenarios with densities below 2-3 persons m−2.

2. It has been widely used in the literature as reference and, although its
accuracy has been debated [36, 52], its widespread use allows a prompt
comparison with results from different studies.

A good agreement between both data sets is found for densities below
about 5 persons m−2, with the results from simulation being slightly higher
than the data by Weidmann. For higher densities the flow given by Weid-
mann quickly drops to 0, while the simulation’s results only slightly decreases
keeping a small flow even under high density conditions. We will discuss
about this aspect below, but it is important to remember that the result
given by Weidmann is based on a collection of experimental data and it is
assumed (without being strictly verified) that for densities above around 5
persons m−2 motion is not possible.
Finally, we computed the fundamental diagram by changing the flow ratio
of bidirectional flow from 0 to 1 in steps of 0.1 (total inflow values were the
same as above, from 0.05 to 2.50 persons / m · s). Flow ratio is the amount
of flow in one direction divided by the total flow from both directions. If we
define:

2Note: data used for comparison refer to the semi-empirical results reported by Weid-
mann and not the equation which fits those data. Flow is obtained by multiplying density
with velocity.
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Figure 11: Comparison of the numerically simulated bidirectional flow fundamental dia-
gram with the data by Weidmann.

rL→R =
JL→R

JL→R + JR→L

(4)

rR→L =
JR→L

JL→R + JR→L

(5)

being the flow ratio from left to right and right to left respectively (J is
the flow in the given direction), it can be easily obtained that:

rL→R + rR→L = 1 (6)

Flow ratio is therefore symmetric around 0.5 (perfectly balanced flow)
and for this reason we decided to summarize all results in a 0 to 0.5 scale
(and to make visualization clearer). Results for the flow-ratio dependent
bidirectional flow fundamental diagram are given in Figure 12.

The fundamental diagram presented here shows a qualitatively good agree-
ment with the one reported by Alhajyaseen et al. [53, 54] for the case of
crosswalks, which, although different in constitution, have common proper-
ties with corridors. Clearly, balanced bidirectional flow is the one performing
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Figure 12: Bidirectional flow fundamental diagram and its relationship with flow ratio.

the worst as reported by different authors [2]. Unidirectional flow show a
stronger stability, without decaying into congested motion for the 5 minutes
duration of the simulations. In general, as the flow ratio approaches 0.5,
instability grows, with congestion occurring earlier.
As Figure 12 shows, a very small outflow is recorded even in extremely dense
crowd (above 6 persons m−2). This is a consequence of the fact that pE is
small, but still larger than 0 in our model, thus allowing few pedestrians to
cross the corridor even during very crowded scenarios. During the simula-
tion a percolation-like behavior was observed for such densities, with a only
limited number of people being able to cross the corridor after a long time.
The fact that results can be produced even for such high densities clearly
show the theoretical capability of our model to deal with very dense crowd.
However, although some authors reported that pressure waves form at very
high density [55], thus leading to some sort of very limited flow, there is no
experimental quantitative evidence to verify the results under such extreme
conditions. In this regard we hope that empirical data will become accessible
in the future, thus allowing a critical comparison with the results presented
here.
Finally, it has to be remarked that over the long run, if densities keep being
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above around 6 persons m−2, more complex psychological phenomena are
expected such as frustration, panic or desperation, making an accurate pre-
diction an even more challenging task. In addition, pedestrian may fall down
and pile on top of each other, thus creating an extremely dangerous scenario
going beyond the modeling capabilities.
Nonetheless, the model presented here gives the possibility to investigate if
such high densities may actually occur (even for a short time) and to in-
vestigate with higher accuracy accidents which already occurred in the past.
From this point of view the high density allowed by the sub-mesh model
gives a deeper insight into the formation of dangerous crowd phenomena,
thus possibly allowing preventing them in the future.

5. Conclusions

Cellular Automata has been widely used in the frame of pedestrian dy-
namics simulation. In particular the floor field model has been able to accu-
rately predict different phenomena with good accuracy. However, one of the
limitations of the Cellular Automata has been its discrete mesh and the rela-
tively low maximum density associated with it. In this study we presented a
modified version of the floor field model making use of a sub-mesh system to
allow simulations of very dense crowd and account for the behavior found in
such situations. A sub-mesh position located between adjacent cells is added
and may be used by pedestrians in dense crowd under particular conditions.
As a consequence, maximum densities reached can be higher than the ones
obtained in conventional Cellular Automata models. At the same time, dense
crowd phenomena can be simulated more accurately.
Comparison between simulation results and experimental data from empirical
observations showed a satisfactory agreement both under a qualitative and
a quantitative aspect. In particular the characteristic double peak observed
during deadlock formation could be reproduced using a numerical model, al-
lowing a further investigation into the reasons leading to this phenomenon.
In this regard, we observed that deadlocks form because pedestrians tend to
stop in front of a large counter-flow. On the other hand, an increased mobil-
ity inside the dense crowd is associated with the dissolution of deadlocks.
The high-density framework has been used to generate an extended funda-
mental diagram for bidirectional flow, showing that dense crowd simulations
are actually possible and confirming the instability of the balanced flow com-
pared to unidirectional motion. However, experimental data for high-density

25



crowd are required to validate the model under such conditions and/or per-
form a re-calibration of the parameters used.
Direct applications of this model can be accident prevention and/or inves-
tigation of accidents which already occurred in the past. Additionally, the
framework presented here may be adapted for an use in different disciplines,
with granular and active matter physics being potential candidates.
In the future, new implementations may be required to further increase the
accuracy obtained in simulations, for example by considering the distribution
of the walking speed or by improving the diagonal motion (for example by
adding the use of the corner points to the current model). If experimental
data will become available, different scenarios (cross-walk at intersections,
evacuation through a small exit,...) could be simulated to validate the model
under a large range of situations.
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